首页 | 本学科首页   官方微博 | 高级检索  
     


Alterations in structural macromolecules and chondrocyte deformations in lapine retropatellar cartilage 9 weeks after anterior cruciate ligament transection
Authors:Sang‐Kuy Han  Ari P. Ronkainen  Simo Saarakkala  Lassi Rieppo  Walter Herzog  Rami K Korhonen
Affiliation:1. Human Performance Laboratory, University of Calgary, Calgary, Canada;2. Advanced Biomedical and Welfare Technology R&BD Group, Korea Institute of Industrial Technology, Cheonan‐si, Korea;3. Department of Applied Physics, University of Eastern Finland, Kuopio, Finland;4. Faculty of Medicine, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland;5. Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
Abstract:The structural integrity and mechanical environment of the articular cartilage matrix directly affect chondrocyte deformations. Rabbit models of early osteoarthritis at 9 weeks following anterior cruciate ligament transection (ACLT) have been shown to alter the deformation behavior of superficial zone chondrocytes in mechanically loaded articular cartilage. However, it is not fully understood whether these changes in cell mechanics are caused by changes in structural macromolecules in the extracellular matrix. Therefore, the purpose of this study was to characterize the proteoglycan content, collagen content, and collagen orientation at 9 weeks post ACLT using microscopic techniques, and relate these changes to the altered cell mechanics observed upon mechanical loading of cartilage. At 9 weeks following ACLT, collagen orientation was significantly (p < 0.05) altered and proteoglycan content was significantly (p < 0.05) reduced in the superficial zone cartilage matrix. These structural changes either in the extracellular or pericellular matrix (ECM and PCM) were also correlated significantly (p < 0.05) with chondrocyte width and height changes, thereby suggesting that chondrocyte deformation response to mechanical compression in early OA changes primarily because of alterations in matrix structure. However, compared to the normal group, proteoglycan content in the PCM from the ACLT group decreased less than that in the surrounding ECM. Therefore, PCM could play a key role to protect excessive chondrocyte deformations in the ACLT group. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:342–350, 2018.
Keywords:chondrocyte  collagen fibre  proteoglycans  osteoarthritis  articular cartilage
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号