首页 | 本学科首页   官方微博 | 高级检索  
     

应用人工神经网络建立肺癌血清肿瘤标记物诊断模型的研究
引用本文:姜曼,耿凌云,蔡宏飞,王明明,王东芳,王家林,韩明勇. 应用人工神经网络建立肺癌血清肿瘤标记物诊断模型的研究[J]. 山东大学学报(医学版), 2010, 48(8): 88
作者姓名:姜曼  耿凌云  蔡宏飞  王明明  王东芳  王家林  韩明勇
作者单位:1.山东大学附属省立医院肿瘤中心, 济南 250021; 2.山东大学附属齐鲁医院中心实验室, 济南 250012;
3.山东省肿瘤医院中心实验室, 济南 250117
基金项目:山东省科技发展计划资助项目,山东省优秀中青年科学家科研奖励基金,山东省医药卫生科技发展计划;资助项目,山东省自然科学基金 
摘    要:目的 检测肺癌患者血清中的肺癌肿瘤标记物,应用人工神经网络建立肺癌血清肿瘤标记物诊断模型。方法 应用酶联免疫吸附法(ELISA)分别测定86例肺癌和80例健康人血清细胞角蛋白21 1片段(CYFRA21 1)、神经元特异性烯醇化酶(NSE)、组织多肽特异性抗原(TPS)、可溶性白细胞介素2受体(sIL 2R)、癌胚抗原(CEA)、糖抗原242(CA242)、抑癌基因p53抗体共7种肿瘤标记物含量。用曲线下面积结合人工神经网络建立诊断模型,并将此诊断模型用于肺癌的诊断。结果 根据血清肿瘤标记物的测定结果,计算出每个肿瘤标记物的曲线下面积,应用人工神经网络建立肺癌血清肿瘤标记物诊断模型,该模型预测肺癌样本的诊断准确率84.1%,敏感性为86.3%,特异性94.8%。结论 本研究建立的肺癌诊断模型对肺癌的诊断具有较高的敏感性和特异性。

关 键 词:肺癌;人工神经网络;肿瘤标记物;诊断模型  
收稿时间:2010-05-01

Diagnostic model of lung cancer established with tumor markers and artificial neural network
JIANG Man,GENG Ling-yun,CAI Hong-fei,WANG Ming-ming,WANG Dong-fang,WANG Jia-lin,HAN Ming-yong. Diagnostic model of lung cancer established with tumor markers and artificial neural network[J]. Journal of Shandong University:Health Sciences, 2010, 48(8): 88
Authors:JIANG Man  GENG Ling-yun  CAI Hong-fei  WANG Ming-ming  WANG Dong-fang  WANG Jia-lin  HAN Ming-yong
Affiliation:1. Cancer Center, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China;
2. Central Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China;
3. Central Laboratory of Shandong Tumor Hospital, Jinan 250117, China
Abstract:Objective    To establish a diagnostic model for lung cancer with artificial neural network(ANN) and tumor markers. Methods    Serum levels of CYFRA21-1、NSE、TPS、sIL 2R、CEA、CA242 and p53-Ab were detected in 86 lung cancer patients and 80 healthy subjects. The tumor markers were evaluated by area under curves anda diagnostic model with artificial neural network was further established. Results    The levels of CYFRA-211、NSE、TPS、SIL-2R、CEA、CA242 and p53-Ab were detected; The diagnostic mode of lung cancer was built with artificial neural network. Accuracy, sensitivity and specificity of this model were84.1%,  86.3% and 94.8%, respectively, in the diagnosis of lung cancer. Conclusion     ANN model of tumor markers has a high sensitivity and specificity in diagnosis of lung cancer.
Keywords:Lung cancer; Artificial neural network; Tumor marker; Diagnostic model
本文献已被 万方数据 等数据库收录!
点击此处可从《山东大学学报(医学版)》浏览原始摘要信息
点击此处可从《山东大学学报(医学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号