首页 | 本学科首页   官方微博 | 高级检索  
     


Automatic 3D+t four-chamber CMR quantification of the UK biobank: integrating imaging and non-imaging data priors at scale
Affiliation:1. Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK;2. Biomedical Imaging Department, Leeds Institute for Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK;3. Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK;4. William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK;5. Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK;6. Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium;7. Department of Electrical Engineering, KU Leuven, Leuven, Belgium;8. Alan Turing Institute, London, UK
Abstract:Accurate 3D modelling of cardiac chambers is essential for clinical assessment of cardiac volume and function, including structural, and motion analysis. Furthermore, to study the correlation between cardiac morphology and other patient information within a large population, it is necessary to automatically generate cardiac mesh models of each subject within the population. In this study, we introduce MCSI-Net (Multi-Cue Shape Inference Network), where we embed a statistical shape model inside a convolutional neural network and leverage both phenotypic and demographic information from the cohort to infer subject-specific reconstructions of all four cardiac chambers in 3D. In this way, we leverage the ability of the network to learn the appearance of cardiac chambers in cine cardiac magnetic resonance (CMR) images, and generate plausible 3D cardiac shapes, by constraining the prediction using a shape prior, in the form of the statistical modes of shape variation learned a priori from a subset of the population. This, in turn, enables the network to generalise to samples across the entire population. To the best of our knowledge, this is the first work that uses such an approach for patient-specific cardiac shape generation. MCSI-Net is capable of producing accurate 3D shapes using just a fraction (about 23% to 46%) of the available image data, which is of significant importance to the community as it supports the acceleration of CMR scan acquisitions. Cardiac MR images from the UK Biobank were used to train and validate the proposed method. We also present the results from analysing 40,000 subjects of the UK Biobank at 50 time-frames, totalling two million image volumes. Our model can generate more globally consistent heart shape than that of manual annotations in the presence of inter-slice motion and shows strong agreement with the reference ranges for cardiac structure and function across cardiac ventricles and atria.
Keywords:CMR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_GR0vKfSstF"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Cardiac Magnetic Resonance  CVD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_jiW5zUKapF"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Cardiovascular Disease  UKB"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_1tR4heleo3"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  UK Biobank  MLP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_1w0KHJJ07b"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Multi-level perceptron  FCN"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_Wf9SW6DG9x"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Fully Convolutional Networks  CNN"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_1sxFEEKzVL"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Convolutional Neural Networks  LAX"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_fDuHLrdTcJ"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Long axis  SAX"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_VEkzS6xlIK"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Short axis  LV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_BOFWCChbMx"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Left ventricle  RV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_NpcaPguxJR"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Right ventricle  LA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_0oijCfi3yv"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Left atrium  RA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_yMaMTW8beL"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Right atrium  ED"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_fhNHsTDwfJ"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  End diastole  ES"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_7sR3100CTV"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  End systole  HdMM"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_9q9PwLKBgN"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Hybrid Mixture Model  CPD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_BtfMQw6vfb"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Coherent point drift  PCA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_VekoCfivwu"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Principal component analysis  TSP"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_oQhUPp8RzU"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Thin-plate spline  gCPD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_wwLapPu47x"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Generalised coherent point drift
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号