首页 | 本学科首页   官方微博 | 高级检索  
     


DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer
Affiliation:1. Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, CX 1066, the Netherlands;2. University of Amsterdam, Science Park 402, Amsterdam, XH 1098, the Netherlands;3. Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, GA 6525, the Netherlands;4. Ellogon AI B.V., the Netherlands;1. University of Washington, Seattle, USA;2. Department of Pathology, The University of Vermont College of Medicine, USA;3. David Geffen School of Medicine, University of California, Los Angeles, USA;1. IBM Zurich Research Lab, Zurich, Switzerland;2. Computer-Assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland;3. Signal Processing Laboratory 5, EPFL, Lausanne, Switzerland;4. National Cancer Institute - IRCCS-Fondazione Pascale, Naples, Italy;5. Institute for High Performance Computing and Networking - CNR, Naples, Italy;6. Aurigen- Centre de Pathologie, Lausanne, Switzerland;7. Lausanne University Hospital, Lausanne, Switzerland;8. Department of Information Technology, Uppsala University, Sweden;1. Physical Sciences, Sunnybrook Research Institute, Toronto, Canada;2. Department of Medical Biophysics, University of Toronto, Canada;3. Department of Computer Science, University of Toronto, Canada;4. Department of Electrical & Computer Engineering, University of Toronto, Canada;1. School of Control Science and Engineering, Shandong University, 17923 Jingshi Road, Jinan, Shandong 250061, PR China;2. Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China;3. Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China;4. Department of Pathology, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong 250132, PR China;5. Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales SY23 3DZ, UK;1. Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstr. 30, Aachen 52074, Germany;2. Pathology & Data Analytics, Leeds Institute of Medical Research at St James''s, University of Leeds, Leeds, United Kingdom;3. Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany;4. Center for Precision Medicine and Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, United States;5. Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany;6. Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands;7. Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany;1. Kimia Lab, University of Waterloo, Waterloo, ON, Canada;2. Vector Institute, MaRS Centre, Toronto, ON, Canada;3. McMaster University, Hamilton, ON, Canada;4. Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
Abstract:We propose a Deep learning-based weak label learning method for analyzing whole slide images (WSIs) of Hematoxylin and Eosin (H&E) stained tumor tissue not requiring pixel-level or tile-level annotations using Self-supervised pre-training and heterogeneity-aware deep Multiple Instance LEarning (DeepSMILE). We apply DeepSMILE to the task of Homologous recombination deficiency (HRD) and microsatellite instability (MSI) prediction. We utilize contrastive self-supervised learning to pre-train a feature extractor on histopathology tiles of cancer tissue. Additionally, we use variability-aware deep multiple instance learning to learn the tile feature aggregation function while modeling tumor heterogeneity. For MSI prediction in a tumor-annotated and color normalized subset of TCGA-CRC (n=360 patients), contrastive self-supervised learning improves the tile supervision baseline from 0.77 to 0.87 AUROC, on par with our proposed DeepSMILE method. On TCGA-BC (n=1041 patients) without any manual annotations, DeepSMILE improves HRD classification performance from 0.77 to 0.81 AUROC compared to tile supervision with either a self-supervised or ImageNet pre-trained feature extractor. Our proposed methods reach the baseline performance using only 40% of the labeled data on both datasets. These improvements suggest we can use standard self-supervised learning techniques combined with multiple instance learning in the histopathology domain to improve genomic label classification performance with fewer labeled data.
Keywords:H&E"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_xug1WIx4vn"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Hematoxylin and Eosin stained  WSI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_bXU7PODQYN"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  whole-slide Image  DDR(d)"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_kxaGXRyXXs"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  DNA damage repair (deficiency)  HRD"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_haSwNjjUsl"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  homologous recombination deficiency  MSI"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_dkbjdzC4rR"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  microsatellite instability  AU(RO)C"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_ZnmiMdHpgF"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  area under the (receiver operating characteristic) curve  DeepMIL"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_D6rQ1XbHPY"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  attention-based deep multiple instance learning  SSL"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_eR0wZR0WWH"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  self-supervised learning  SimCLR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_BFQsw0eScp"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  simple contrastive learning for learning visual features  VarMIL"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_e1if78ny92"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  variability-aware DeepMIL  TCGA"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_mRckgBcxDN"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  the cancer genome atlas  BC"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_EMBoaxicod"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  breast cancer  CRCk"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  pc_5qrZTqSFru"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  colorectal cancer (as preprocessed by Kather et al.)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号