首页 | 本学科首页   官方微博 | 高级检索  
     


Surface modification of poly(hydroxybutyrate) films to control cell-matrix adhesion
Authors:Pompe Tilo  Keller Kristin  Mothes Gisela  Nitschke Mirko  Teese Mark  Zimmermann Ralf  Werner Carsten
Affiliation:Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany. pompe-tilo@ipfdd.de
Abstract:Tailoring surface properties of degradable polymer scaffolds is key to progress in various tissue engineering strategies. Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thin films were modified by low pressure ammonia plasma, low pressure water vapour plasma, or immersion in a sodium hydroxide solution to elaborate means to control the cell-matrix adhesion of human umbilical cord vein endothelial cells grown on these materials. Fibronectin (FN) heteroexchange and cell adhesion were correlated to the physicochemical characteristics of the modified polymer surfaces which were investigated by X-ray photoelectron spectroscopy (XPS), scanning force microscopy (SFM), electrokinetic measurements, and contact angle measurements. All treatments increased the hydrophilicity of the polymer samples, which could be accounted to newly created amine or carboxyl functionalities for ammonia plasma or water vapour plasma treatments, respectively, and ester hydrolysis for treatments with alkaline aqueous solutions. Main features of cell adhesion and FN reorganisation-evaluated after 1h and after 5 days-could be attributed to the anchorage strength of pre-coated FN layers at the polymer surface, which was, in turn found to be triggered by the type of modification applied. In line with earlier studies referring to different materials cell adhesion and matrix reorganisation were shown to be sensitively controlled through the physicochemical profile of poly(hydroxybutyrate) surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号