首页 | 本学科首页   官方微博 | 高级检索  
     


Doppler optical coherence tomography to monitor the effect of photodynamic therapy on tissue morphology and perfusion
Authors:Aalders Maurice C G  Triesscheijn Martijn  Ruevekamp Marjan  de Bruin Martijn  Baas Paul  Faber Dirk J  Stewart Fiona A
Affiliation:University of Amsterdam, Academic Medical Center, Laser Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. M.C.Aalders@amc.uva.nl
Abstract:We investigated the feasibility of using optical coherence tomography (OCT) for noninvasive real-time visualization of the vascular effects of photodynamic therapy (PDT) in normal and tumor tissue in mice. Perfusion control measurements were initially performed after administrating vaso-active drugs or clamping of the subcutaneous tumors. Subsequent measurements were made on tumor-bearing mice before and after PDT using the photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). Tumors were illuminated using either a short drug light interval (D-L, 3 h), when mTHPC is primarily located in the tumor vasculature or a long D-L interval (48 h), when the drug is distributed throughout the whole tumor. OCT enabled visualization of the different layers of tumor, and overlying skin with a maximal penetration of < or =0.5-1 mm. PDT with a short D-L interval resulted in a significant decrease of perfusion in the tumor periphery, to 20% of pre-treatment values at 160 min, whereas perfusion in the skin initially increased by 10% (at 25 min) and subsequently decreased to 60% of pre-treatment values (at 200 min). PDT with a long D-L interval did not induce significant changes in perfusion. The concept of using noninvasive OCT measurements for monitoring early, treatment-related changes in morphology and perfusion may have applications in evaluating effects of anti-angiogenic or antivascular (cancer) therapy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号