首页 | 本学科首页   官方微博 | 高级检索  
     

Sphere梯度孔结构力学性能有限元分析
引用本文:石志良,黄琛,卢小龙,李锋,孙允龙. Sphere梯度孔结构力学性能有限元分析[J]. 中国生物医学工程学报, 2019, 38(3): 339-347. DOI: 10.3969/j.issn.0258-8021.2019.03.011
作者姓名:石志良  黄琛  卢小龙  李锋  孙允龙
作者单位:1(武汉理工大学机电工程学院,武汉 430070); 2(华中科技大学同济医学院,武汉 430030)
基金项目:国家重点研发计划项目(2018YFB1105500,2016YFB1101300)
摘    要:建立不同孔径分布的钛合金梯度多孔结构的三维有限元模型,对力学性能进行分析。使用Rhino 5.0和ABAQUS 6.1软件,分别建立sphere、sphere_line、sphere_plane、sphere_point等4种按不同梯度分布的多孔结构有限元模型。对模型分别加载200、400、600、800、1000 N的力,加载力作用于上表面,方向垂直于表面向下,选定下表面为固定约束,计算等效应力及最大主应力。在加载力相同的情况下,sphere_plane梯度孔模型的最大主应力及最大等效应力最大;其次为sphere_point梯度孔模型,较sphere_plane梯度孔模型小42.49%和23.61%;sphere_line梯度孔模型再次之,较sphere_plane梯度孔模型小47.60%和33.12%;sphere无梯度孔模型的最大主应力及最大等效应力最小,较sphere_plane梯度孔模型小68.44%和54.13%。在4种不同梯度孔径分布的多孔结构中,sphere无梯度孔结构的实际受力最小、承载能力最好,其次是sphere_line梯度孔结构,再次是sphere_point梯度孔结构次之,sphere_plane梯度孔结构实际受力最大,其承载能力相比前3种要差。最后通过快速原型对设计出的4种模型进行制备,得到多孔钛合金实体,并对实体进行力学性能测试实验,得出的结论可验证数值模拟分析结果的可靠性。该研究结果可为多孔钛合金植入体设计以及临床应用提供相关设计参考和理论依据。

关 键 词:梯度多孔结构  计算机辅助设计  植入物  有限元分析  力学性能  
收稿时间:2018-04-08

Finite Element Analysis of Mechanical Properties of Graded Sphere Porosity Structure with Different Pore Size Distributions
Shi Zhiliang,Huang Chen,Lu Xiaolong,Li Feng,Sun Yunlong. Finite Element Analysis of Mechanical Properties of Graded Sphere Porosity Structure with Different Pore Size Distributions[J]. Chinese Journal of Biomedical Engineering, 2019, 38(3): 339-347. DOI: 10.3969/j.issn.0258-8021.2019.03.011
Authors:Shi Zhiliang  Huang Chen  Lu Xiaolong  Li Feng  Sun Yunlong
Affiliation:(School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China); (Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China)
Abstract:To establish a three-dimensional finite element model of titanium alloy porous structure with the different pore size distributions and to implement the finite element mechanical analysis. The sphere, sphere_line, sphere_plane, sphere_point three-dimensional models of porous structure was created by software Rhino 5.0. The finite element analysis was implemented by Abaqus 6.1 to calculate the Von-Mises stress and maximum principal stress. Before calculated, The 200, 400, 600, 800, and 1000 N loading forces were applied to the upper surface, and the direction was vertically downward. The lower surface was selected as a fixed constraint. Under the same loading force, thesphere plane has the maximum principal stress and the maximum equivalent stress,followed were the sphere point gradient pore model and sphere line gradient pore model, the sphere without gradient pore model was the smallest. Among the four porous structures with different gradient pore size distributions, sphere has the lowest actual load and the best carrying capacity, the next was sphere line gradient hole structure and then sphere point. Sphere plane gradient pore structure had the maximum actual load, and its carrying capacity was worse than the three formers. Finally, the four models that were designed in this work were prepared by rapid prototyping to obtain the porous titanium alloy body, and the mechanical property test on these bodies was carried out. The conclusion verifies the reliability of numerical simulation results. The results of this research could be used to provide relevant reference and theoretical basis for porous titanium alloy implants and clinical applications.
Keywords:gradient porous structure  computer aided design  implants  finite element analysis  mechanical property  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国生物医学工程学报》浏览原始摘要信息
点击此处可从《中国生物医学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号