首页 | 本学科首页   官方微博 | 高级检索  
检索        


Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness
Authors:R J Smith  L M Sam  J M Justen  G L Bundy  G A Bala  J E Bleasdale
Institution:Department of Hypersensitivity Diseases Research, Upjohn Company, Kalamazoo, Michigan.
Abstract:1-6-17 beta-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]- 1H-pyrrole-2,5-dione (U-73122), an inhibitor of phospholipase C (PLC)-dependent processes in human platelets, was found to be a potent inhibitor of human polymorphonuclear neutrophil (PMN) activation by structurally unrelated receptor-specific agonists. U-73122 caused a time- and concentration-dependent (0.1-1 microM) inhibition of myeloperoxidase and vitamin B12-binding protein release from PMNs exposed to N-formyl-methionyl-leucyl-phenylalanine, recombinant human C5a, leukotriene B4 and platelet-activating factor. Activation of the respiratory burst, as measured by superoxide anion production, in PMNs stimulated with these agonists was also suppressed by U-73122. These data suggested that U-73122 inhibited a component of signal transduction that was common to the mechanisms of action of these stimuli. Production of inositol 1,4,5-trisphosphate and 1,2-diacylglycerol and the rise in the cytosolic free calcium concentration, which are early postreceptor events in PMN activation, were all suppressed in U-73122-treated PMNs stimulated with the agonists. These signal transduction events require activation of PLC. Receptor-coupled activation of PLC in membranes isolated from PMNs was potently inhibited by U-73122. U-73122, however, had no direct effect on PMN protein kinase C activity. 1-6-17 beta-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl] -2,5- pyrrolidine-dione (U-73343), a close analog of U-73122 that does not suppress PLC activity, did not inhibit receptor-specific agonist-induced PMN responsiveness. U-73122, therefore, is a novel reagent that is useful in investigating PLC function in receptor-mediated PMN activation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号