Acquisition of resistance to 1-(4-amino-2-methyl-5-pyrimidinyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride in V79 cells through increased removal of O6-alkylguanine |
| |
Authors: | M S Satoh N H Huh Y Horie J Thomale M F Rajewsky T Kuroki |
| |
Affiliation: | Department of Cancer Cell Research, University of Tokyo. |
| |
Abstract: | The molecular mechanism of acquisition of resistance to 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitroso ure a hydrochloride (ACNU) was investigated using ACNU-resistant clones (ACNUr-1-4) isolated from the V79 cell line. The binding level of alkyl cyanate, a decomposition product of ACNU, to protein in ACNUr-1 cells was not less than that in the parental V79 cells, indicating that the acquired resistance was not due to a reduced intracellular concentration of ACNU. Because O6-chloroethylguanine, an intermediate in cytotoxic interstrand cross-link formation by ACNU, is known to be repaired by the same mechanism as O6-ethyldeoxyguanosine (O6-EtdGuo), we quantitated O6-EtdGuo by radioimmunoassay at various times after exposure of cells to 100 micrograms/ml N-ethyl-N-nitrosourea for 20 min. In V79 cells, elimination of O6-EtdGuo was negligible, but in all four resistant clones, 30 to 59% of the O6-EtdGuo was removed within 24 hr after exposure. This increased removal of O6-EtdGuo among the resistant clones was associated with the activity of O6-alkylguanine DNA alkyltransferase (O6-AGT) determined using cell extracts. The present results indicate that increased removal of O6-chloroethylguanine in ACNU-resistant clones by O6-AGT is mechanistically linked to the acquisition of resistance to ACNU. |
| |
Keywords: | |
|
|