首页 | 本学科首页   官方微博 | 高级检索  
     


Electrically enhanced solute permeation across poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: effect of hydrogel crosslink density and ionic conductivity
Authors:Garland Martin J  Singh Thakur Raghu Raj  Woolfson A David  Donnelly Ryan F
Affiliation:School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
Abstract:Swelling kinetics, ionic conductivity and electrically assisted solute permeation (theophylline, methylene blue and fluorescein sodium) of poly(ethylene glycol) (PEG) crosslinked poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) hydrogels are presented. The effects of PMVE/MA concentration and PEG molecular weight (MW) on swelling behaviour and network parameters were investigated in phosphate buffered saline (pH 7.4). The percentage swelling of hydrogels increased, and the crosslink density decreased, with a decrease in PMVE/MA content and with an increase in PEG MW. The ionic conductivity of the formulation was found to increase with an increase in PEG MW. The application of an electrical current led to a significant enhancement in the rate and extent of solute permeation across the swollen hydrogels. Furthermore, it was found that the extent of solute permeation enhancement following current application was dependent upon the crosslink density and ionic conductivity of the formulation. In general, a decrease in crosslink density and an increase in ionic conductivity led to a greater enhancement in solute permeation following current application. The electro-responsive nature of these hydrogels suggests that have a potential application in electrically controlled drug delivery systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号