首页 | 本学科首页   官方微博 | 高级检索  
检索        


Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro
Authors:Matsumoto T  Kawakami M  Kuribayashi K  Takenaka T  Tamaki T
Institution:Department of Orthopedic Surgery, Wakayama Medical College, Japan. tac@wakayama-med.ac.jp
Abstract:STUDY DESIGN: A rabbit model designed to investigate the effects of applied cyclic tensile stress on the cell division rate and the collagen synthesis in the rabbit nucleus pulposus cells in vitro. OBJECTIVE: To evaluate the effects of mechanical stress on nucleus pulposus cells, thus adding to the understanding of the adaptation of the intervertebral disc to mechanical stress. SUMMARY OF BACKGROUND DATA: Intervertebral disc cells in vivo are exposed to a multitude of physical forces during physical motion. Although it is known that in intervertebral disc disease, a common pathway of disc degeneration is mechanical stress on the nucleus pulposus or the anulus fibrosus or both, the underlying mechanism has been less well defined. METHODS: Nucleus pulposus cells were isolated from 4-week-old Japanese white rabbits. These cells were subjected to the mechanical cyclic stretch stress using a computerized, pressure-operated instrument that physically deformed the cells. The DNA synthesis rate, collagen synthesis rate, and cell cycle progression were measured. RESULTS: Cyclic tensile stretch increased the DNA synthesis rate in nucleus pulposus cells and in the population of cells in the S phase of the cell cycle during 1 to 2 days of subjugation to stress. Cyclic tensile stretch also increased collagenous protein synthesis in nucleus pulposus cells during 1 to 4 days of stress. CONCLUSIONS: Mechanical stress on nucleus pulposus cells promotes the proliferation of cells and alters the properties of intervertebral disc cells. This study may reflect the adaptation of the intervertebral disc to increased motion and stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号