首页 | 本学科首页   官方微博 | 高级检索  
     


Intraarticular location predicts cartilage filling and subchondral bone changes in a chondral defect
Authors:Heir Stig  Årøen Asbjørn  Løken Sverre  Sulheim Steinar  Engebretsen Lars  Reinholt Finn P
Affiliation:1.Martina Hansens Hospital, Bærum;2.Institute of Surgical Research, Oslo University Hospital Rikshospitalet, Oslo;3.Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo;4.Orthopedic Center, Oslo University Hospital Ullevål, Oslo, and Faculty of Medicine, University of Oslo;5.Innlandet Hospital Lillehammer, Lillehammer;6.Division of Pathology, University of Oslo, and Oslo University Hospital Rikshospitalet, Oslo, Norway
Abstract:

Background and purpose

The natural history of, and predictive factors for outcome of cartilage restoration in chondral defects are poorly understood. We investigated the natural history of cartilage filling subchondral bone changes, comparing defects at two locations in the rabbit knee.

Animals and methods

In New Zealand rabbits aged 22 weeks, a 4-mm pure chondral defect (ICRS grade 3b) was created in the patella of one knee and in the medial femoral condyle of the other. A stereo microscope was used to optimize the preparation of the defects. The animals were killed 12, 24, and 36 weeks after surgery. Defect filling and the density of subchondral mineralized tissue was estimated using Analysis Pro software on micrographed histological sections.

Results

The mean filling of the patellar defects was more than twice that of the medial femoral condylar defects at 24 and 36 weeks of follow-up. There was a statistically significant increase in filling from 24 to 36 weeks after surgery at both locations.The density of subchondral mineralized tissue beneath the defects subsided with time in the patellas, in contrast to the density in the medial femoral condyles, which remained unchanged.

Interpretation

The intraarticular location is a predictive factor for spontaneous filling and subchondral bone changes of chondral defects corresponding to ICRS grade 3b. Disregarding location, the spontaneous filling increased with long-term follow-up. This should be considered when evaluating aspects of cartilage restoration.Focal articular cartilage injuries of the knee are common (Hjelle et al. 2002, Aroen et al. 2004) and they can impair patients'' quality of life as much as severe osteoarthritis (Heir et al. 2010). The literature concerning the natural history of focal cartilage defects in patients, and the intrinsic factors affecting it, is limited (Linden 1977, Messner and Gillquist 1996, Drogset and Grontvedt 2002, Shelbourne et al. 2003, Loken et al. 2010). In experimental studies evaluating cartilage restoration in general, the importance of intrinsic factors such as the depth and size of the lesion and the time from when the lesion was made to evaluation have been emphasized (Shapiro et al. 1993, Hunziker 1999, Lietman et al. 2002). Which part of the joint is affected and whether or not the defect is weight-bearing are also of interest (Hurtig 1988, Frisbie et al. 1999). Most of these studies have, however, concerned defects penetrating the subchondral mineralized tissues corresponding to ICRS grade 4 (Brittberg and Winalski 2003). Access to bone marrow elements in these defects might be one of the strongest predictive factors for filling of the defect, making the importance of other factors difficult to evaluate (Hunziker 1999).In experimental studies on pure chondral defects that do not penetrate the subchondral mineralized tissues, corresponding to ICRS grade 3b (Brittberg and Winalski 2003), the type of animal studied, the size of the lesion, and the location of the defects vary, and there is limited data on the influence of these parameters on outcome (Breinan et al. 2000). The information on spontaneous filling comes mainly from observations of untreated defects serving as controls (Grande et al. 1989, Brittberg et al. 1996, Breinan et al. 1997, 2000, Frisbie et al. 1999, 2003, Dorotka et al. 2005) and the information on subchondral bone changes is even more limited (Breinan et al. 1997, Frisbie et al. 1999). Although most human focal cartilage lesions are located on the medial femur condyle (Aroen et al. 2004), there have been few experimental studies involving untreated ICRS grade 3b defects on the medial femur condyle (Dorotka et al. 2005). According to a PubMed search, the rabbit knee is the most widely used experimental animal model for cartilage restoration (Årøen 2005). The locations of ICRS grade 3 chondral defects in the rabbit knee evaluated for spontaneous changes have included the patella (Grande et al. 1989, Brittberg et al. 1996) and, in one study, defects at the distal surface of the femur (Mitchell and Shepard 1976). The latter report did not, however, include quantitative data.To our knowledge, the influence of the intraarticular location on the outcome of cartilage restoration and subchondral bone changes has not been thoroughly studied. Thus, the main purpose of our study was to test the hypothesis that the intraarticular location influences the spontaneous filling of a chondral defect that does not penetrate the subchondral bone. Secondly, we wanted to evaluate whether the intraarticular location would influence changes in the subchondral bone and degenerative changes as evaluated from macroscopic appearance and proteoglycan content of synovial fluid (Messner et al. 1993a).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号