首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of in vivo and ex vivo [3H]flumazenil binding assays to determine occupancy at the benzodiazepine binding site of rat brain GABAA receptors
Authors:Li Jennifer  Fish Rebecca L  Cook Susan M  Tattersall Frederick D  Atack John R
Affiliation:Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK. lijenn7@yahoo.co.uk
Abstract:In the present study, the occupancy of flumazenil (Ro 15-1788; 1-30mg/kg p.o.) at the benzodiazepine site of rat brain GABA(A) receptors was compared using in vivo and ex vivo binding methodologies with [(3)H]flumazenil as the radioligand. Animals either received tracer quantities of [(3)H]flumazenil 3min before being killed for the in vivo binding, or were killed and brain homogenates incubated with 1.8nM [(3)H]flumazenil. The flumazenil dose required to inhibit in vivo binding of [(3)H]flumazenil by 50% (ID(50)) was 2.0mg/kg, which represents the most accurate measure of benzodiazepine site occupancy by flumazenil in vivo. Occupancy measured in crude brain homogenates using the ex vivo method was time dependent with a 3mg/kg dose giving occupancies of 77% and 12% using 0.5 or 60min ex vivo incubations times, respectively, presumably due to dissociation from the binding site during the ex vivo incubation. When incubation time was minimised (0.5min), and despite being under non-equilibrium conditions, the ex vivo method gave an ID(50) of 1.5mg/kg which was not too dissimilar from that observed using in vivo binding (2.0mg/kg). As expected, ex vivo binding can give an underestimation of receptor occupancy but this can be minimised by careful attention to the kinetics of unlabelled drug and radioligand.
Keywords:Flumazenil (Ro 15-1788)   In vivo binding   Ex vivo binding   Receptor occupancy   Dissociation   GABA
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号