首页 | 本学科首页   官方微博 | 高级检索  
     


RNA Interference-Mediated Knockdown of Bombyx mori Haemocyte-Specific Cathepsin L (Cat L)-Like Cysteine Protease Gene Increases Bacillus thuringiensis kurstaki Toxicity and Reproduction in Insect Cadavers
Authors:Linlin Yang  Yanyan Sun  Meiling Chang  Yun Zhang  Huili Qiao  Siliang Huang  Yunchao Kan  Lunguang Yao  Dandan Li  Camilo Ayra-Pardo
Affiliation:1.China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, School of Life Sciences and Agricultural Engineering, Nanyang Normal University (NYNU), Nanyang 473061, China; (L.Y.); (Y.S.); (M.C.); (Y.Z.); (H.Q.); (S.H.); (Y.K.); (L.Y.);2.School of Life Science, Henan University, Jin Ming Avenue, Kaifeng 475004, China
Abstract:The silkworm’s Cat L-like gene, which encodes a lysosomal cathepsin L-like cysteine protease, is thought to be part of the insect’s innate immunity via an as-yet-undetermined mechanism. Assuming that the primary function of Cat L-like is microbial degradation in mature phagosomes, we hypothesise that the suppression of the Cat L-like gene expression would increase Bacillus thuringiensis (Bt) bacteraemia and toxicity in knockdown insects. Here, we performed a functional analysis of Cat L-like in larvae that were fed mulberry leaves contaminated with a commercial biopesticide formulation based on Bt kurstaki (Btk) (i.e., Dipel) to investigate its role in insect defence against a known entomopathogen. Exposure to sublethal doses of Dipel resulted in overexpression of the Cat L-like gene in insect haemolymph 24 and 48 h after exposure. RNA interference (RNAi)-mediated suppression of Cat L-like expression significantly increased the toxicity of Dipel to exposed larvae. Moreover, Btk replication was higher in RNAi insects, suggesting that Cat L-like cathepsin may be involved in a bacterial killing mechanism of haemocytes. Finally, our results confirm that Cat L-like protease is part of the antimicrobial defence of insects and suggest that it could be used as a target to increase the insecticidal efficacy of Bt-based biopesticides.
Keywords:insect pathogen   insect immunity   RNAi   gene function   bacterial clearance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号