Analysis of two constitutive forms of microsomal heme oxygenase in different rat tissues |
| |
Authors: | Zhen-Wei Xia Yun-Zhu Li Shun-Nian Chen Qing-Xiang Shen Xiao-Ming Ben Shan-Chang Yu |
| |
Affiliation: | Zhen-Wei Xia, Yun-Zhu Li, Shun-Nian Chen, Shan-Chang Yu, Xiao- Ming Ben, Department of Pediatrics, Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, ChinaQing-Xiang Shen, Shanghai Institute of Cell Biology, Academia Sinica, Shanghai 200031, ChinaZhen-Wei Xia, male, born in 1963, graduated from Shanghai 2nd Medical University with MD of pediatrics, now attending doctor. |
| |
Abstract: | AIM: To isolate and purify the heme oxygenase (HO) isoform in microsomal fractions of Sprague-Dawley rat liver and brain in order to understand the characteristics of the two constitutive forms and the mechanism of the occurrence of hyperbilirubinemia.METHODS: After induction by hematin and phenylhydrazine, the rat liver and brain microsomal fractions were isolated and purified by DEAE-Sephacel and hydroxyapatite. Activity and the apparent molecular weight of the two isoforms [heme oxygenase 1 (HO-1) and heme oxygenase-2 (HO-2)] were measured. Kunming mice were used to prepare antiserum against purified liver HO-2. Rat liver HO-1 and brain HO-2 preparations were analyzed by the western immunoblotting technique.RESULTS: Two isoforms were purified and identified in the treated rat liver, and HO-1 was the predominant form with a ratio of 2:1. In the native state, HO-2 activity was detectable but HO-1 activity was increased in response to hematin and phenylhydrazine, while HO-2 activity was fully refractory to these agents. The apparent molecular weights of HO-1 and HO-2 were about Mr 30000 and Mr 36000 under reducing conditions, respectively. In the untreated liver and treated brain, only one peak of HO activity exhibiting an elution profile similar to that of HO-2 of the treated liver was detected. The presence of an activity peak was not found in the elution profile at the region where the inducible isoform of HO (HO-1) was expected. The apparent molecular weight in treated brain preparation was identical to that of the purified liver HO-2. Cross-reactivity of HO-2 in the brain microsomal preparation was established, but a reactivity of HO-1 in the liver was not observed by western immunoblotting analysis when antiserum to liver HO-2 was applied.CONCLUSION: Two constitutive forms of HO, designated as HO-1 and HO-2, exist in the treated rat liver. HO-1 is an inducible enzyme. In the treated rat brain only HO-2 exists and is a molecular entity similar to that found in liver. The two constitutive forms were different in molecular weight and in inducibility and immunochemical properties. |
| |
Keywords: | Heme oxygenase Liver Brain Hyperbilirubinemia |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《World journal of gastroenterology : WJG》浏览原始摘要信息 |
|