首页 | 本学科首页   官方微博 | 高级检索  
检索        


Promoting Diabetic Wound Therapy Using Biodegradable rhPDGF-Loaded Nanofibrous Membranes: CONSORT-Compliant Article
Authors:Cheng-Hung Lee  Kuo-Sheng Liu  Shang-Hung Chang  Wei-Jan Chen  Kuo-Chun Hung  Shih-Jung Liu  Jong-Hwei S Pang  Jyuhn-Huarng Juang  Chung-Chuan Chou  Po-Cheng Chang  Yi-Ting Chen  Fu-Shing Wang
Abstract:The nanofibrous biodegradable drug-loaded membranes that sustainably released recombinant human platelet-derived growth factor (rhPDGF-BB) to repair diabetic wounds were developed in this work.rhPDGF-BB and poly(lactic-co-glycolic acid) (PLGA) were mixed in hexafluoroisopropyl alcohol, followed by the electrospinning of the solutions into biodegradable membranes to equip the nanofibrous membranes. An elution technique and an enzyme-linked immunosorbent assay kit were used to determine the rhPDGF-BB release rates in vitro and in vivo from this membrane. Eighteen Sprague-Dawley streptozotocin-induced diabetic rats were randomized into 3 groups: rhPDGF-BB-loaded nanofibrous membrane group, PLGA only membrane group, and conventional gauze sponge group for the wound associated with diabetes of rat in each group.The nanofibrous biodegradable membranes released effective concentrations of rhPDGF-BB for over 21 days. The nanofibrous rhPDGF-BB-loaded PLGA membranes contained more water and were further hydrophilic than PLGA only fibers. The rhPDGF-BB-loaded PLGA membranes considerably helped the diabetic wounds repairing. Furthermore, the proliferative cells and angiogenesis of rats associated with diabetes by rhPDGF-BB-loaded nanofibrous membranes were greater than those of other groups, owing to the increased matrix metalloproteinase 9.These biodegradable rhPDGF-BB-loaded membranes were effective in treating diabetic wounds as very advanced accelerators during the initial phases of wound-healing process.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号