Fuel oxidation at the walk-to-run-transition in humans |
| |
Authors: | Kathleen J. Ganley Richard M. Herman Wayne T. Willis |
| |
Affiliation: | a Department of Physical Therapy and Athletic Training, Northern Arizona University, Flagstaff, AZ, USAb Department of Kinesiology, Arizona State University, Tempe, AZ, USAc Harrington Department of Bioengineering, Arizona State University, Tempe, AZ, USA |
| |
Abstract: | Multiple factors (including anthropometric, kinetic, mechanical, kinematic, perceptual, and energetic factors) are likely to play a role in the walk-to-run transition in humans. The primary purpose of the present study was to consider an additional factor, the metabolic fuel source. Indirect calorimetry was used to measure fuel oxidation, and perception of effort was recorded as 10 overnight-fasted adults locomoted on a level treadmill at speeds progressing from 1.56 to 2.46 m s−1 in increments of 0.11 m s−1 and 10.0 minutes under 3 conditions: (1) unconstrained choice of gait, (2) walking at all speeds, and (3) running at all speeds. The preferred transition speed was 2.08 ± 0.03 m s−1. Gait transition from walking to running increased oxygen consumption rate, decreased the perception of effort, and decreased the rate of carbohydrate oxidation. We propose that, in an evolutionary context, gait transition, guided by the perception of effort, can be viewed as a carbohydrate-sparing strategy. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|