首页 | 本学科首页   官方微博 | 高级检索  
检索        


Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo
Authors:Ashwani Khurana  Hiedi McKean  Hyunseok Kim  Sung-Hoon Kim  Jacie Mcguire  Lewis R Roberts  Matthew P Goetz  Viji Shridhar
Institution:Department of Experimental Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. shridhar.vijayalakshmi@mayo.edu.
Abstract:

Introduction

Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous group of proliferative cellular lesions that have the potential to become invasive. Very little is known about the molecular alterations involved in the progression from DCIS to invasive ductal carcinoma (IDC). Heparan endosulfatase (HSulf-2) edits sulfate moieties on heparan sulfate proteoglycans (HSPGs) and has been implicated in modulating heparin binding growth factor signaling, angiogenesis and tumorigenesis. However, the role of HSulf-2 in breast cancer progression is poorly understood. MCF10DCIS.com cells (referred as MCF10DCIS) express HSulf-2 and form comedo type DCIS and progress to IDC when transplanted in immune-deficient mice and, therefore, is an ideal model to study breast cancer progression. We evaluated the role of HSulf-2 in progression from DCIS to IDC using mouse fat pad mammary xenografts.

Methods

Non-target control (NTC) and HSulf-2 knockdown in MCF10DCIS breast cancer cells were achieved by NTC shRNA and two different lentiviral shRNA against HSulf-2 respectively. Xenografts were established by injecting NTC and HSulf-2 deficient MCF10DCIS cells in mouse mammary fat pads. Xenografts were subjected to H&;E staining for morphological analysis, TUNEL and Propidium iodide staining (to determine the extent of apoptosis), Western blot analysis and zymography.

Results

Using a mouse mammary fat pad derived xenograft model, we observed that compared to control treated xenografts, down-regulation of HSulf-2 was associated with significant delays in growth at Week 7 (P-value < 0.05). Histological examination of the tumors demonstrated substantial differences in comedo necrosis, with marked luminal apoptosis and up-regulation of apoptotic markers Bim, cleaved PARP and cleaved caspase 3 in HSulf-2 depleted xenografts. Furthermore, HSulf-2 depleted xenografts retained the basement membrane integrity with decreased activity and expression of matrix metalloproteinase 9 (MMP-9), an enzyme critical for degradation of extracellular matrix compared to nontargeted control.

Conclusion

Our data suggest that HSulf-2 expression may be critical for human breast cancer progression. Down-regulation of HSulf-2 leads to retention of comedo type DCIS and delays the progression of DCIS to IDC. Further studies are necessary to determine if therapeutic targeting of HSulf-2 expression might delay the progression of DCIS to IDC.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号