Abstract: | Despite increasing information about the mechanism of action of cyclosporine A (CsA), little is known about the way lymphocytes recover from CsA. Recovery is central to understanding the pharmacodynamics of CsA in vivo. We studied the recovery of calcineurin phosphatase (CN) activity in CsA-treated cells. Single dose kinetics in renal transplant patients showed that inhibition of CN activity in PBL increased and fell concomitant with CsA blood vessels. In vitro, control PBL treated with CsA 100 micrograms/l, washed, and resuspended in CsA-free medium showed little recovery (0-20%) after 24 h. Erythrocytes or anti-CsA Ab added to the recovery medium increased recovery to 50% within 4 h. Similar recovery was seen in the ability of cells to produce IFN-gamma after OKT3 stimulation. Recovery of CN activity was associated with the efflux of [3H]CsA, was not blocked by cycloheximide and was temperature sensitive. A cell line with high expression of surface P glycoprotein (PGP), showed rapid recovery. However, PGP blockade did not prevent recovery in PBL, indicating a different PGP-independent mechanism. In PBL, recovery from CsA is slow and limited in vitro, but rapid in vivo, where CsA equilibrates among a complex set of extralymphocytic binding sites. |