首页 | 本学科首页   官方微博 | 高级检索  
     


In vivo noninvasive characterization of brown adipose tissue blood flow by contrast ultrasound in mice
Authors:David M Baron  Maeva Clerte  Peter Brouckaert  Michael J Raher  Aidan W Flynn  Haihua Zhang  Edward A Carter  Michael H Picard  Kenneth D Bloch  Emmanuel S Buys  Marielle Scherrer-Crosbie
Affiliation:Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine.
Abstract:Background- Interventions to increase brown adipose tissue (BAT) volume and activation are being extensively investigated as therapies to decrease the body weight in obese subjects. Noninvasive methods to monitor these therapies in animal models and humans are rare. We investigated whether contrast ultrasound (CU) performed in mice could detect BAT and measure its activation by monitoring BAT blood flow. After validation, CU was used to study the role of uncoupling protein 1 and nitric oxide synthases in the acute regulation of BAT blood flow. Methods and Results- Blood flow of interscapular BAT was assessed in mice (n=64) with CU by measuring the signal intensity of continuously infused contrast microbubbles. Blood flow of BAT estimated by CU was 0.5±0.1 (mean±SEM) dB/s at baseline and increased 15-fold during BAT stimulation by norepinephrine (1 μg·kg(-1)·min(-1)). Assessment of BAT blood flow using CU was correlated to that performed with fluorescent microspheres (R(2)=0.86, P<0.001). To evaluate whether intact BAT activation is required to increase BAT blood flow, CU was performed in uncoupling protein 1-deficient mice with impaired BAT activation. Norepinephrine infusion induced a smaller increase in BAT blood flow in uncoupling protein 1-deficient mice than in wild-type mice. Finally, we investigated whether nitric oxide synthases played a role in acute norepinephrine-induced changes of BAT blood flow. Genetic and pharmacologic inhibition of nitric oxide synthase 3 attenuated the norepinephrine-induced increase in BAT blood flow. Conclusions- These results indicate that CU can detect BAT in mice and estimate BAT blood flow in mice with functional differences in BAT.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号