首页 | 本学科首页   官方微博 | 高级检索  
     

一种独立成分分析的鲁棒算法及其在脑磁图数据分析中的应用
引用本文:魏守水,黄青华,王鹏. 一种独立成分分析的鲁棒算法及其在脑磁图数据分析中的应用[J]. 生物医学工程学杂志, 2006, 23(3): 648-652
作者姓名:魏守水  黄青华  王鹏
作者单位:1. 山东大学,控制科学与工程学院,济南,250061
2. 上海交通大学,模式识别与图像处理研究所,上海,200240
基金项目:山东省青年科学家科研奖励基金
摘    要:独立成分分析是一种新的信号处理统计方法。被广泛用于各个领域。在信号分析中面临的难题是:源信号的不同特性(既包括超高斯信号又包括亚高斯信号);未知的独立源数目;传感器信号受到较大的加性噪声污染。针对以上难题,本文提出了一种独立成分分析的鲁棒算法。该方法先对观测数据作预处理,将包含噪声的高维传感器观测信号降维分解到信号子空间和噪声子空间。利用交叉验证法估计出独立源的数目(解决了独立成分分析本身不能确定源数目的缺陷);然后利用快速稳定的FastICA算法分离独立成分。通过人工合成的数据和实际的脑磁图数据分析。验证了这种方法的功效。

关 键 词:独立成分分析  主成分分析  交叉验证法  鲁棒预处理  脑磁图
收稿时间:2004-04-06
修稿时间:2004-04-062004-07-16

A Robust Approach to Independent Component Analysis and Its Application in the Analysis of Magnetoencephalographic Data
Wei Shoushui,Huang Qinghua,Wang Peng. A Robust Approach to Independent Component Analysis and Its Application in the Analysis of Magnetoencephalographic Data[J]. Journal of biomedical engineering, 2006, 23(3): 648-652
Authors:Wei Shoushui  Huang Qinghua  Wang Peng
Affiliation:School of Control Science and Engineering, Shandong University, Ji'nan 250061, China.
Abstract:Independent component analysis(ICA) is a new method of signal statistical processing and widely used in many fields.We face several problems such as the different nature of source signals(e.g.both super-Gaussian and sub-Gaussian sources exist),unknown number of sources and contamination of the sensor signals with a high level of additive noise in the analysis of signal.A robust approach was proposed to solve these problems in this paper.Firstly,observations(noisy data) possessing high dimensionality were preprocessed and decomposed into a source signal subspace and a noise subspace.Then the number of sources was got through the cross-validation method,and this solved the problem that ICA could not confirm the number of sources.At last the transformed low-dimensional source signals were further separated with the fast and stable ICA algorithm.Through the analysis of artificially synthesized data and the real-world Magnetoencephalographic data,the efficacy of this robust approach was illustrated.
Keywords:Independent component analysis(ICA) Principal component analysis Cross-validation method Robust preprocessing Magnetoencephalographic
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号