首页 | 本学科首页   官方微博 | 高级检索  
     


Assessment of sanitary landfill leachate characterizations and its impacts on groundwater at Alexandria
Authors:Hassan Ahmed Hossam  Ramadan Mohamed Hassan
Affiliation:Environmental Heath Dept., High Institute of Public Health, Alexandria University.
Abstract:The total amount of solid waste generated in Alexandria is 2820 tons/d which increases to 3425 tons/day during summer. In the past, 77% of the collected solid wastes was open dumped. The open dumping sites did not have the minimum requirements for pollution control. Following the exacerbation of the problem, the Alexandria Governorate contracted a company to carry out the solid waste management. The contracted company transferred 75% of the daily generated solid wastes to a new constructed sanitary lanfill. The site receives a daily average of 1910 tons. The landfilling is performed by trench method in the form of cells. The produced leachate is discharged into two lined aerated lagoons. The biogas formed from biodegradation of landfilled solid wastes is burned and the produced heat is used for drying the lagoons leachate. The remaining residues are relandfilled. The study aims at assessment of the solid waste sanitary landfill leachate characterization and its impacts on the groundwater. The analysis of the collected data confirms that leachates from the landfill are severely contaminated with organics, salts, and heavy metals. The fluctuations in concentration levels of the different parameters were attributed to aging and thickness of waste layers, stage of decomposition, and re-landfilling of the concentrated residues from the drying lagoons. The concentrations of NH4-N (600 mg/l) indicated that the process of stabilization was still in the initial stages and attributed to the compaction process. The high BOD5 results (28,833 mg/l) indicated that the process of stabilization was in the initial stages which were very slow. The high COD results (45,240 mg/l) can be attributed to the compaction of the wastes which also retards the degradation of the solid wastes. The BOD and COD values indicated clearly severe contamination. The BOD5/COD ratio measured in the current study (0.64) indicated that the leachate of the present study was biodegradable and unstabilized, and required time and favourable conditions for anaerobic biodegradation. Heavy metals were lower compared with what have been observed in other countries. Re-landfilling of the residue after drying the leachate in lagoons and the short time of biodegradation in the landfill site were factors which effected the high strength of most of the parameters concentrations of the leachate. Assessment of groundwater contamination through piezometer wells around the active cells indicated that there was no contamination from the leachate to the groundwater surrounding the site. The study recommended emphasizing the importance of adjusting the biodegradation factors, the monitoring program, the prohibition of disposing heavy metals, determination of the leachate generation rate, and treatment of leachate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号