首页 | 本学科首页   官方微博 | 高级检索  
检索        


Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades
Authors:Tobias L Schulte  Alexander Keiler  Felix Riechelmann  Tobias Lange  Werner Schmoelz
Institution:1. Department of Orthopedics and Tumor Orthopedics, Münster University Hospital, Münster, Germany
2. Department of Trauma Surgery, Medical University Innsbruck, Anichstr. 35, 6020, Innsbruck, Austria
Abstract:

Purpose

Vertebral augmentation with PMMA is a widely applied treatment of vertebral osteoporotic compression fractures. Subsequent fractures are a common complication, possibly due to the relatively high stiffness of PMMA in comparison with bone. Silicone as an augmentation material has biomechanical properties closer to those of bone and might, therefore, be an alternative. The study aimed to investigate the biomechanical differences, especially stiffness, of vertebral bodies with two augmentation materials and two filling grades.

Methods

Forty intact human osteoporotic vertebrae (T10–L5) were studied. Wedge fractures were produced in a standardized manner. For treatment, PMMA and silicone at two filling grades (16 and 35 % vertebral body fill) were assigned to four groups. Each specimen received 5,000 load cycles with a high load range of 20–65 % of fracture force, and stiffness was measured. Additional low-load stiffness measurements (100–500 N) were performed for intact and augmented vertebrae and after cyclic loading.

Results

Low-load stiffness testing after cyclic loading normalized to intact vertebrae showed increased stiffness with 35 and 16 % PMMA (115 and 110 %) and reduced stiffness with 35 and 16 % silicone (87 and 82 %). After cyclic loading (high load range), the stiffness normalized to the untreated vertebrae was 361 and 304 % with 35 and 16 % PMMA, and 243 and 222 % with 35 and 16 % silicone augmentation. For both high and low load ranges, the augmentation material had a significant effect on the stiffness of the augmented vertebra, while the filling grade did not significantly affect stiffness.

Conclusions

This study for the first time directly compared the stiffness of silicone-augmented and PMMA-augmented vertebral bodies. Silicone may be a viable option in the treatment of osteoporotic fractures and it has the biomechanical potential to reduce the risk of secondary fractures.
Keywords:Silicone  PMMA  Vertebral augmentation  Elastoplasty  Vertebroplasty  Osteoporosis  Compression fracture  Stiffness
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号