首页 | 本学科首页   官方微博 | 高级检索  
     


Mutation of the gene encoding fibrillin-2 results in syndactyly in mice
Authors:Chaudhry S S  Gazzard J  Baldock C  Dixon J  Rock M J  Skinner G C  Steel K P  Kielty C M  Dixon M J
Affiliation:School of Biological Sciences and Department of Dental Medicine and Surgery, 3.239 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
Abstract:Fibrillins are large, cysteine-rich glycoproteins that form microfibrils and play a central role in elastic fibrillogenesis. Fibrillin-1 and fibrillin-2, encoded by FBN1 on chromosome 15q21.1 and FBN2 on chromosome 5q23-q31, are highly similar proteins. The finding of mutations in FBN1 and FBN2 in the autosomal dominant microfibrillopathies Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA), respectively, has highlighted their essential role in the development and homeostasis of elastic fibres. MFS is characterized by cardiovascular, skeletal and ocular abnormalities, and CCA by long, thin, flexed digits, crumpled ears and mild joint contractures. Although mutations arise throughout FBN1, those clustering within exons 24-32 are associated with the most severe form of MFS, so-called neonatal MFS. All the mutations described in CCA occur in the "neonatal region" of FBN2. Both MFS and CCA are thought to arise via a dominant negative mechanism. The analysis of mouse mutations has demonstrated that fibrillin-1 microfibrils are mainly engaged in tissue homeostasis rather than elastic matrix assembly. In the current investigation, we have analysed the classical mouse mutant shaker-with-syndactylism using a positional candidate approach and demonstrated that loss-of-function mutations outside the "neonatal region" of Fbn2 cause syndactyly in mice. These results suggest that phenotypes distinct from CCA may result in man as a consequence of mutations outside the "neonatal region" of FBN2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号