首页 | 本学科首页   官方微博 | 高级检索  
     


Restoration of klotho expression induces apoptosis and autophagy in hepatocellular carcinoma cells
Authors:Guoshun Shu  Biao Xie  Feng Ren  Dong-cai Liu  Jiapeng Zhou  Qinglong Li  Jinhui Chen  Lianwen Yuan  Jianping Zhou
Affiliation:1. Departemt of Geriatric Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
2. Department of General Surgery, 8th Changsha Hospital, Changsha, Hunan, 410015, China
Abstract:

Purpose

Klotho has been identified as a tumor suppressor in several human malignancies including hepatocellular carcinoma (HCC). However, the signaling pathways involved in the tumor suppressive role of klotho in HCC have not been reported. Here, we investigated the role of klotho in HCC cell proliferation, apoptosis, autophagy, and invasion, as well as its associated signal transduction pathways.

Methods

Restoration of klotho gene expression was established by delivering a klotho gene expression vector into the human HCC cell lines HepG2 and MHCC-97-H. Cell viability was measured using a cell counting (CCK-8) assay and apoptosis was analyzed through flow cytometry. Autophagy was measured via LC3-I and LC3-II protein expression levels and tumor cell invasion was assessed using a Matrigel invasion chamber assay. Expression and phosphorylation of several apoptosis and survival related proteins were assessed using Western blot assays.

Results

Exogenous klotho gene expression significantly inhibited HCC cell proliferation, induced HCC cell apoptosis, increased LC3-I and LC3-II protein expression in HCC cells, and decreased migration of HCC cells in a Matrigel invasion chamber assay. Exogenous klotho gene expression also down-regulated the phosphorylation levels of the IGF-1 receptor, and the downstream Akt, ERK, and p70S6K proteins. Both apoptosis and autophagy inhibitors decreased klotho-induced apoptosis and autophagy.

Conclusion

Klotho is a tumor suppressor that, through the regulation of IGF-1R phosphorylation and subsequent activation of downstream Akt-p70S6K and ERK signaling, regulates HCC tumor cell proliferation, apoptosis, autophagy and invasion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号