首页 | 本学科首页   官方微博 | 高级检索  
     


Attenuation of CCl4-induced hepatic oxidative stress in rat by Launaea procumbens
Authors:Rahmat Ali Khan  Muhammad Rashid Khan  Sumaira Sahreen
Affiliation:1. Department of Biotechnology, Faculty of Biological Sciences, University of Science and Technology Bannu, Khyber Pakhtunkhwa, Pakistan;2. Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan;3. Botanical Sciences Division, Pakistan Museum of Natural History, Garden Avenue Shakarparian Road, Islamabad, Pakistan
Abstract:Antioxidant effects of Launaea procumbens methanol extract (LPME) were evaluated against CCl4-induced oxidative stress in liver of rat. 48 male rats were equally divided in to 8 groups (06 rats each). Group I (control) remained untreated, while Group II was given vehicles (olive oil and DMSO). Animals of Groups III, IV, V, VI and VII were injected intraperitoneally with CCl4 (3 ml/kg b.w.; i.p., 20% CCl4/olive oil) twice a week for four weeks. Group III received only CCl4 while Group IV was given rutin (50 mg/kg b.w.). Group V, VI and VII were administered LPME at a dose of 100, 150 and 200 mg/kg b.w., respectively. Animals of Group VIII received LPME (200 mg/kg b.w.) alone. Oxidative stress induced with CCl4 in liver was evident by a significant increase in triglycerides, total cholesterol, LDL-cholesterol, and enzymatic activities of AST, ALT, ALP, LDH, γ-GT activities in serum. Level of lipid peroxidation, nitrite, and hydrogen peroxide concentration, DNA injuries in liver samples was also increased with CCl4. GSH concentration in liver was significantly decreased, as were the activities of antioxidant enzymes; CAT, POD, SOD, GSH-Px, GST, GSR, QR. Co-treatment of rats with LPME and rutin prevented all the changes observed with CCl4. Hepatic lesions and telomerase activity induced with CCl4 was also suppressed with LPME and rutin. It is suggested that LPME effectively prevented the CCl4-induced oxidative injuries in liver, possibly through antioxidant and/or free radical scavenging effects of flavonoids and phenolic compounds in the extract.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号