首页 | 本学科首页   官方微博 | 高级检索  
     


The role of the G protein gamma(2) subunit in opioid antinociception in mice
Authors:Hosohata K  Logan J K  Varga E  Burkey T H  Vanderah T W  Porreca F  Hruby V J  Roeske W R  Yamamura H I
Affiliation:Departments of Pharmacology, Chemistry, Biochemistry, Psychiatry, Medicine and the Program in Neuroscience, University of Arizona, Tucson, AZ 85724, USA.
Abstract:We examined the role of the gamma(2) subunit of G proteins (Ggamma(2)) in the antinociception produced by c[D-Pen(2), D-Pen(5)]enkephalin (DPDPE) in mice. DPDPE produced 84.0+/-9.0% antinociception in vehicle-treated mice. After intracerebroventricular (i.c.v.) treatment with an antisense phosphorothioate oligodeoxynucleotide to the Ggamma(2) subunit, DPDPE-mediated antinociception decreased to 24.4+/-7.4%. The mismatch phosphorothioate oligodeoxynucleotide-treated mice showed 65.1+/-10.3% antinociception, while the missense phosphorothioate oligodeoxynucleotide-treated mice showed 76.4+/-23.6% antinociception by DPDPE. The reduction of analgesia in antisense phosphorothioate oligodeoxynucleotide-treated mice was significant in comparison with vehicle-treated (P<0.001), mismatch phosphorothioate oligodeoxynucleotide-treated (P<0.01) and missense phosphorothioate oligodeoxynucleotide-treated (P<0.05) mice. These results suggest that the G protein gamma(2) subunit is involved in the transduction pathway leading to antinociception by DPDPE.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号