GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks |
| |
Authors: | Irena Vertkin Boaz Styr Edden Slomowitz Nir Ofir Ilana Shapira David Berner Tatiana Fedorova Tal Laviv Noa Barak-Broner Dafna Greitzer-Antes Martin Gassmann Bernhard Bettler Ilana Lotan Inna Slutsky |
| |
Affiliation: | aDepartment of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel;;bSagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel;;cDepartment of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland |
| |
Abstract: | Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABAA, receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABAB receptor (GABABR) blockade or genetic deletion of the GB1a receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABABRs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB1a-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB1a intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the CaV2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB1b-containing receptors. Thus, GABABRs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABABR as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure''s persistence in the absence of functional GABABRs.Neural circuits achieve an ongoing balance between plasticity and stability to enable adaptations to constantly changing environments while maintaining neuronal activity within a stable regime. Hebbian-like plasticity, reflected by persistent changes in synaptic and intrinsic properties, is crucial for refinement of neural circuits and information storage; however, alone it is unlikely to account for the stable functioning of neural networks (1). In the last 2 decades, major progress has been made toward understanding the homeostatic negative feedback systems underlying restoration of a baseline neuronal function after prolonged activity perturbations (2–4). Homeostatic processes may counteract the instability by adjusting intrinsic neuronal excitability, inhibition-to-excitation balance, and synaptic strength via postsynaptic or presynaptic modifications (5, 6) through a profound molecular reorganization of synaptic proteins (7, 8). These stabilizing mechanisms have been collectively termed homeostatic plasticity. Homeostatic mechanisms enable invariant firing rates and patterns of neural networks composed from intrinsically unstable activity patterns of individual neurons (9).However, nervous systems are not always capable of maintaining constant output. Although some mutations, genetic knockouts, or pharmacologic perturbations induce a compensatory response that restores network firing properties around a predefined “set point” (10), the others remain uncompensated, or their compensation leads to pathological function (11). The inability of neural networks to compensate for a perturbation may result in epilepsy and various types of psychiatric disorders (12). Therefore, determining under which conditions activity-dependent regulation fails to compensate for a perturbation and identifying the key regulatory molecules of neuronal homeostasis is critical for understanding the function and malfunction of central neural circuits.In this work, we explored the mechanisms underlying the failure in stabilizing hippocampal network activity by combining long-term extracellular spike recordings by multielectrode arrays (MEAs), intracellular patch-clamp recordings of synaptic responses, imaging of synaptic vesicle exocytosis, and calcium dynamics, together with FRET-based analysis of intermolecular interactions at individual synapses. Our results demonstrate that metabotropic, G protein-coupled receptors for GABA, GABABRs, are essential for firing rate homeostasis in hippocampal networks. We explored the mechanisms by which GABABRs gate homeostatic synaptic plasticity. Our study raises the possibility that persistence of epileptic seizures in GABABR-deficient mice (13–15) is directly linked to impairments in a homeostatic control system. |
| |
Keywords: | homeostatic plasticity GABAB receptor synaptic vesicle release syntaxin-1 FRET |
|
|