首页 | 本学科首页   官方微博 | 高级检索  
检索        


Molecular dynamics simulations of cooling in laser-excited heme proteins.
Authors:E R Henry  W A Eaton  and R M Hochstrasser
Abstract:In transient optical experiments the absorbed photon raises the vibrational temperature of the chromophore. In heme proteins at room temperature conversion of a 530-nm photon into vibrational energy is estimated to raise the temperature of the heme by 500-700 K. Cooling of the heme is expected to occur mainly by interacting with the surrounding protein. We report molecular dynamics simulations for myoglobin and cytochrome c in vacuo that predict that this cooling occurs on the ps time scale. The decay of the vibrational temperature is nonexponential with about 50% loss occurring in 1-4 ps and with the remainder in 20-40 ps. These results predict the presence of nonequilibrium vibrational populations that would introduce ambiguity into the interpretation of transient ps absorption and Raman spectra and influence the kinetics of sub-ns geminate recombination.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号