Symmetric interactions within a homogeneous starburst cell network can lead to robust asymmetries in dendrites of starburst amacrine cells |
| |
Authors: | Münch Thomas A Werblin Frank S |
| |
Affiliation: | Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA. |
| |
Abstract: | Starburst amacrine cells in the mammalian retina respond asymmetrically to movement along their dendrites; centrifugal movement elicits stronger responses in each dendrite than centripetal movement. It has been suggested that the asymmetrical response can be attributed to intrinsic properties of the processes themselves. But starburst cells are known to release and have receptors for both GABA and acetylcholine. We tested whether interactions within the starburst cell network can contribute to their directional response properties. In a computational model of interacting starburst amacrine cells, we simulated the response of individual dendrites to moving light stimuli. By setting the model parameters for "synaptic connection strength" (cs) to positive or negative values, overlapping starburst dendrites could either excite or inhibit each other. For some values of cs, we observed a very robust inward/outward asymmetry of the starburst dendrites consistent with the reported physiological findings. This is the case, for example, if a starburst cell receives inhibition from other starburst cells located in its surround. For other values of cs, individual dendrites can respond best either to inward movement or respond symmetrically. A properly wired network of starburst cells can therefore account for the experimentally observed asymmetry of their response to movement, independent of any internal biophysical or biochemical properties of starburst cell dendrites. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
| 点击此处可从《Journal of neurophysiology》浏览原始摘要信息 |
|
点击此处可从《Journal of neurophysiology》下载全文 |
|