Medical image denoising using one-dimensional singularity function model |
| |
Authors: | Jianhua Luo Yuemin Zhu Bassem Hiba |
| |
Affiliation: | 1. Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche CNRS (UMR 5800), Bordeaux, France;2. Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain;3. Sherbrooke Connectivity Imaging Lab (SCIL), Département d''Informatique Université de Sherbrooke, 2500 Boulevard de l''Université, Sherbrooke, QC J1K2R1, Canada;4. Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Université Bordeaux Segalen, F-33076 Bordeaux, France |
| |
Abstract: | A novel denoising approach is proposed that is based on a spectral data substitution mechanism through using a mathematical model of one-dimensional singularity function analysis (1-D SFA). The method consists in dividing the complete spectral domain of the noisy signal into two subsets: the preserved set where the spectral data are kept unchanged, and the substitution set where the original spectral data having lower signal-to-noise ratio (SNR) are replaced by those reconstructed using the 1-D SFA model. The preserved set containing original spectral data is determined according to the SNR of the spectrum. The singular points and singularity degrees in the 1-D SFA model are obtained through calculating finite difference of the noisy signal. The theoretical formulation and experimental results demonstrated that the proposed method allows more efficient denoising while introducing less distortion, and presents significant improvement over conventional denoising methods. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|