Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury |
| |
Authors: | Petrica‐Adrian Panaite Ibtissam Barakat‐Walter |
| |
Affiliation: | 1. Neurology Department, University Hospital (CHUV), Lausanne, Switzerland;2. Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland |
| |
Abstract: | Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3‐treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine α‐bungarotoxin and neurofilament antibody. Four weeks after surgery, most end‐plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS‐treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission. © 2010 Wiley‐Liss, Inc. |
| |
Keywords: | Thyroid hormones peripheral nerve regeneration muscle reinnervation neuromuscular junction recovery compound muscle action potentials |
|
|