首页 | 本学科首页   官方微博 | 高级检索  
检索        


In vivo assessment of HCN channel current (Ih) in human motor axons
Authors:Susan Tomlinson FRACP  David Burke MD  DSc  Mike Hanna MD  FRCP  Martin Koltzenburg MD  FRCP  Hugh Bostock PhD
Institution:1. Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK;2. MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK;3. Institute of Clinical Neurosciences, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
Abstract:The “Trond” protocol of nerve excitability tests has been used widely to assess axonal function in peripheral nerve. In this study, the routine Trond protocol was expanded to refine assessment of cAMP‐dependent, hyperpolarization‐activated current (Ih) activity. Ih activity is generated by hyperpolarization‐activated, cyclic nucleotide–modulated (HCN) channels in response to hyperpolarization. It limits activity‐dependent hyperpolarization, contributes to neuronal automaticity, and is implicated in chronic pain states. Published data regarding Ih activity in motor nerve are scant. We used additional strong, prolonged hyperpolarizing conditioning stimuli in the threshold electrotonus component of the Trond protocol to demonstrate the time‐course of activation of Ih in motor axons. Fifteen healthy volunteers were tested on four occasions during 1 week. Ih action was revealed in the threshold electrotonus by the limiting and often reversal, after about 100 ms, of the threshold increase caused by strong hyperpolarizing currents. Statistical analysis by repeated‐measures analysis of variance enabled confidence limits to be established for variation between subjects and within subjects. The results demonstrate that, of all the excitability parameters, those dependent on Ih were the most characteristic of an individual, because variance between subjects was more than four times the variance within subjects. This study demonstrates a reliable method for in vivo assessment of Ih, and also serves to document the normal variability in nerve excitability properties within subjects. Muscle Nerve, 2010
Keywords:axonal excitability  electrotonus  inward rectification  motor axons  threshold tracking  HCN channels
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号