首页 | 本学科首页   官方微博 | 高级检索  
检索        


Postnatal development of NT3 and TrkC in mouse ventral cochlear nucleus
Authors:J Feng  J Bendiske  DK Morest
Institution:1. Southern Connecticut State University, New Haven, Connecticut;2. University of Connecticut Health Center, Farmington, Connecticut
Abstract:In the developing nervous system, neurotrophin 3 (NT3) and brain‐derived neurotrophic factor (BDNF) have been shown to interact with each other and with different parts of a neuron or glia and over considerable distances in time and space. The auditory system provides a useful model for analyzing these events, insofar as it is subdivided into well‐defined groups of specific neuronal types that are readily related to each other at each stage of development. Previous work in our laboratory suggested that NT3 and its receptor TrkC in the mouse cochlear nucleus (CN) may be involved in directing neuronal migration and initial targeting of inputs from cochlear nerve axons in the embryo. NT3 is hard to detect soon after birth, but TrkC lingers longer. Here we found NT3 and TrkC around P8 and the peak around P30. Prominent in ventral CN, associated with globular bushy cells and stellate cells, they were localized to different subcellular sites. The TrkC immunostain was cytoplasmic, and that of NT3 was axonal and perisomatic. TrkC may be made by CN neurons, whereas NT3 has a cochlear origin. The temporal pattern of their development and the likelihood of activity‐dependent release of NT3 from cochlear axons suggest that it may not be critical in early synaptogenesis; it may provide long‐term trophic effects, including stabilization of synapses once established. Activity‐related regulation could coordinate the supply of NT3 with inner ear activity. This may require interaction with other neurotrophins, such as BDNF. © 2009 Wiley‐Liss, Inc.
Keywords:ventral cochlear nucleus (VCN)  NT3  TrkC  postnatal development
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号