首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of hydroxyapatite-nanocrystal-coated stainless steel, and its cell interaction
Authors:Okada Masahiro  Masuda Miwa  Tanaka Ryoichi  Miyatake Kunio  Kuroda Daisuke  Furuzono Tsutomu
Affiliation:Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
Abstract:Calcined nanocrystals of hydroxyapatite (HAp) having spherical or rod-shaped morphologies were coated through covalent linkage on a type 316L stainless steel substrate, which was chemically modified by the graft polymerization of gamma-methacryloxypropyl triethoxysilane (MPTS) at 70-110 degrees C. The grafting of poly(MPTS) on the substrate was confirmed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR). In order to coat the substrate with the HAp crystals through covalent linkage, the reactionbetween the alkoxysilyl groupsin the poly (MPTS) grafted on the substrate and the OH groups on the HAp crystals was conducted at 80 degrees C. The poly(MPTS)-grafted substrate was strongly coated with the HAp nanocrystals, although the HAp crystals adsorbed physically on the original substrate without poly(MPTS) grafting were removed by ultrasonic treatment. Human umbilical vein endothelial cells (HUVEC) adhered in larger numbers on the HAp-coated stainless steel substrate as compared with the original substrate after 24 h of initial incubation. The number of HUVEC adhered on the rod-shaped HAp-coated substrate was not significantly different from that on the spherical HAp-coated substrate under the present conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号