Abstract: | [3H]-guanfacine (N-amidino-2-(2,6-dichloro 3[3H] phenyl) acetamide hydrochloride; 24.2 Ci/mmol) has been used as a radioligand in homogenates of rat cerebral cortex. Specific binding of [3H]-guanfacine was linear with respect to tissue concentration (2.5-15 mg/ml), saturable and not markedly affected in the pH range 6.5-8.0. Analysis of the saturation of [3H]-guanfacine binding using an iterative least squares fitting procedure gave best fits to a single site model. [3H]-guanfacine binding was of high affinity (Kd 1.77 +/- 0.24 nM; n = 8) to a population of non interacting sites (nH 0.99 +/- 0.02; n = 8) with a density of 118.2 +/- 8.4 fmol/mg protein (n = 8). Highest levels of binding were achieved in cerebral cortex followed by thalamus greater than hypothalamus greater than medulla/pons greater than spinal cord greater than striatum greater than cerebellum. Binding was stereoselective with regard to the (-)-isomer of noradrenaline and the order of potency for displacement of [3H]-guanfacine by agonists was naphazoline greater than clonidine greater than (-)-adrenaline greater than (-)-alpha methylnoradrenaline greater than (-)-noradrenaline greater than (+/-)-alpha-methylnoradrenaline greater than (+)-noradrenaline greater than methoxamine greater than (+)-adrenaline greater than phenylephrine and by antagonists was phentolamine greater than dihydroergocryptine greater than piperoxane greater than yohimbine greater than prazosin greater than labetalol greater than indoramin suggested binding to alpha 2-adrenoceptors. The monovalent cations Na+ and K+ and also guanosine 5'-triphosphate (GTP) produced concentration-dependent inhibition whereas the divalent cations Ca2+, Mg2+, and Mn2+ first enhanced, then inhibited [3H]-guanfacine binding. Na+ (150 mM) or GTP (100 microM) produced marked reductions and Mn2+ (5 mM) marked increases in the number of receptor sites labelled by [3H]-guanfacine.(ABSTRACT TRUNCATED AT 250 WORDS) |