首页 | 本学科首页   官方微博 | 高级检索  
     


Role of Ca2+ mobilization in muscarinic receptor-mediated membrane depolarization in guinea pig ileal smooth muscle cells
Authors:Unno T  Inaba T  Ohashi H  Takewaki T  Komori S
Affiliation:Department of Veterinary Medicine, Faculty of Agriculture, United Graduate School, Gifu University, Japan.
Abstract:In single smooth muscle cells dispersed from guinea pig ileum, the muscarinic agonist carbachol (CCh) at 2 microM produced an oscillatory or sustained type of depolarization and at 100 microM, the latter type depolarization. Depletion of internal Ca2+ stores blocked the oscillatory response, but not the sustained responses to 2 microM and 100 microM CCh, although their decay after reaching the peak became faster. Blocking voltage-dependent Ca2+ channels (VDCCs) blocked both types of response to 2 microM CCh, but only slowed the initial rising phase of 100 microM CCh responses. Combination of Ca2+ store depletion and VDCC blockade abolished the responses to 2 microM CCh again and decreased those to 100 microM CCh in peak amplitude and persistency. Combination of Ca2+ store depletion with removal of extracellular Ca2+ markedly reduced or abolished the 100 microM CCh responses. The results suggest that muscarinic depolarization of the ileal cells requires Ca2+ mobilization for its generation and persistence; at weak muscarinic stimulation, both Ca2+ entry via VDCCs and Ca2+ release from internal stores may contribute to the Ca2+ mobilization; and under strong muscarinic stimulation, Ca2+ entry pathways resistant to VDCC blockers may also contribute to it.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号