首页 | 本学科首页   官方微博 | 高级检索  
检索        


Comparative genomics of oral isolates of Streptococcus mutans by in silico genome subtraction does not reveal accessory DNA associated with severe early childhood caries
Institution:1. New York University College of Dentistry, Department of Cariology and Comprehensive Care, 345 East 24th St, New York, NY 10010, USA;2. Center for Health Informatics and Bioinformatics, New York University School of Medicine, 227 East 30th St, New York, NY 10016, USA
Abstract:Comparative genomics is a popular method for the identification of microbial virulence determinants, especially since the sequencing of a large number of whole bacterial genomes from pathogenic and non-pathogenic strains has become relatively inexpensive. The bioinformatics pipelines for comparative genomics usually include gene prediction and annotation and can require significant computer power. To circumvent this, we developed a rapid method for genome-scale in silico subtractive hybridization, based on blastn and independent of feature identification and annotation. Whole genome comparisons by in silico genome subtraction were performed to identify genetic loci specific to Streptococcus mutans strains associated with severe early childhood caries (S-ECC), compared to strains isolated from caries-free (CF) children.The genome similarity of the 20 S. mutans strains included in this study, calculated by Simrank k-mer sharing, ranged from 79.5% to 90.9%, confirming this is a genetically heterogeneous group of strains. We identified strain-specific genetic elements in 19 strains, with sizes ranging from 200 to 39 kb. These elements contained protein-coding regions with functions mostly associated with mobile DNA. We did not, however, identify any genetic loci consistently associated with dental caries, i.e., shared by all the S-ECC strains and absent in the CF strains. Conversely, we did not identify any genetic loci specific with the healthy group. Comparison of previously published genomes from pathogenic and carriage strains of Neisseria meningitidis with our in silico genome subtraction yielded the same set of genes specific to the pathogenic strains, thus validating our method.Our results suggest that S. mutans strains derived from caries active or caries free dentitions cannot be differentiated based on the presence or absence of specific genetic elements. Our in silico genome subtraction method is available as the Microbial Genome Comparison (MGC) tool, with a user-friendly JAVA graphical interface.
Keywords:Comparative genomics  Software  Dental caries  Virulence  Pathogenesis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号