Diagnosis of glucose-6-phosphate dehydrogenase (G6PD) mutations by DNA amplification and allele-specific oligonucleotide probes. |
| |
Authors: | C S Huang C J Tang M J Huang T K Tang |
| |
Affiliation: | Department of Laboratory Medicine, Cathay General Hospital, Taipei, Taiwan, ROC. |
| |
Abstract: | We have recently identified that at least four types of mutation are responsible for the glucose-6-phosphate dehydrogenase (G6PD) polymorphism in the Chinese of Taiwan. Two mutations (487 G-->A and 493 A-->G) occurring at nucleotide position 487 and 493, respectively, create Alu I and Ava II recognition sites which enabled us to directly examine these two mutations by PCR/restriction enzyme (RE) digestion. However, the other two mutations (1376 G-->T and 1388 G-->A), which do not generate any recognizable restriction sites, were detected by DNA sequencing method which is not suitable for rapid diagnosis. Using the PCR technique, we have successfully developed a simple and rapid method for the detection of 1376 and 1388 mutations. This method involves the selective amplification of a DNA fragment from human G6PD gene with specific oligonucleotide primers, followed by hybridization with allele-specific oligonucleotide (ASO) probes. Using the PCR/ASO and PCR/RE methods, we have successfully examined two families and 20 unrelated subjects with G6PD deficiency. Our results indicate that the PCR/ASO method is suitable for the rapid determination of 1376 and 1388 mutations. The combined use of PCR/ASO and PCR/RE methods will be suitable for rapid diagnosis of four known G6PD mutations in Chinese. |
| |
Keywords: | |
|
|