Studies of the dendritic tree of wild-type cerebellar Purkinje cells in lurcher chimeric mice |
| |
Authors: | K W Caddy K Herrup |
| |
Affiliation: | Department of Physiology, University College London, England. |
| |
Abstract: | Naturally occurring mutations are valuable tools for the study of neural development, especially when used in conjunction with the techniques of chimeric mouse production. In this study we examine the response of Purkinje cell dendrites to the altered developmental environment found in the lurcher in equilibrium with wild-type chimera. Lurcher (+/Lc) is an autosomal dominant gene that causes the cell-autonomous degeneration of all Purkinje cells of +/Lc genotype. Thus, in +/Lc in equilibrium with +/+ chimeras, only wild-type Purkinje cells survive to maturity. The number of these survivors can vary from less than 10,000 to greater than 100,000. Previous work has shown that the final ratio of presynaptic granule cells to postsynaptic Purkinje cells is increased in lurcher chimeras. On average, therefore, one might expect that each remaining Purkinje cell would experience an increased supply of afferents, and our hypothesis was that dendritic growth and/or sprouting might occur as a result. This proved incorrect and, indeed, the Purkinje cells in the lurcher chimeras show changes of a predominantly atrophic nature. Unusual morphologies are found, including variable branching density, failure of the distal dendrite to reach the pial surface, loss of isoplanarity, and the frequent appearance of large caliber, primary or secondary dendritic branches ending abruptly in "stub ends." Quantitative analysis of Golgi-Cox impregnated material reveals that in lurcher chimeras the Purkinje cell dendritic arbor is reduced by more than 60% compared to wild-type animals. We present possible explanations for this finding and consider several potential implications. |
| |
Keywords: | dendrite chimera cerebellum Golgi impregnation |
|
|