首页 | 本学科首页   官方微博 | 高级检索  
检索        


Interaction of Yersinia pestis with macrophages: limitations in YopJ-dependent apoptosis
Authors:Zauberman Ayelet  Cohen Sara  Mamroud Emanuelle  Flashner Yehuda  Tidhar Avital  Ber Raphael  Elhanany Eytan  Shafferman Avigdor  Velan Baruch
Institution:Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona, 74100, Israel.
Abstract:The enteropathogenic Yersinia strains are known to downregulate signaling pathways in macrophages by effectors of the type III secretion system, in which YopJ/YopP plays a crucial role. The adverse effects of Yersinia pestis, the causative agent of plague, were examined by infecting J774A.1 cells, RAW264.7 cells, and primary murine macrophages with the EV76 strain and with the fully virulent Kimberley53 strain. Y. pestis exerts YopJ-dependent suppression of tumor necrosis factor alpha secretion and phosphorylation of mitogen-activated protein kinases and thus resembles enteropathogenic Yersinia. However, Y. pestis is less able to activate caspases, to suppress NF-kappaB activation, and to induce apoptosis in macrophages than the high-virulence Y. enterocolitica WA O:8 strain. These differences appear to be related to lower efficiency of YopJ effector translocation by Y. pestis. The efficiencies of effector translocation and of apoptosis induction can be enhanced either by using a high bacterial load in a synchronized infection or by overexpressing exogenous YopJ in Y. pestis. Replacing YopJ with the homologous Y. enterocolitica effector YopP can further enhance these effects. Overexpression of YopP in a yopJ-deleted Y. pestis background leads to rapid and effective translocation into target cells, providing Y. pestis with the high cytotoxic potential of Y. enterocolitica WA O:8. We suggest that the relative inferiority of Y. pestis in triggering cell death in macrophages may be advantageous for its in vivo propagation in the early stages of infection.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号