首页 | 本学科首页   官方微博 | 高级检索  
检索        


Cytokines differentially regulate CXCL10 production by interferon-gamma-stimulated or tumor necrosis factor-alpha-stimulated human gingival fibroblasts
Authors:Hosokawa Y  Hosokawa I  Ozaki K  Nakae H  Matsuo T
Institution:Department of Conservative Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan;and Department of Oral Health Care Promotion, School of Oral Health and Welfare, Faculty of Dentistry, The University of Tokushima, Tokushima, Japan
Abstract:Background and Objective: CXC chemokine 10 (CXCL10) activates CXC chemokine receptor 3 (CXCR3) and attracts activated T‐helper 1 cells. In this study we examined the effects of cytokines on CXCL10 production by human gingival fibroblasts. Material and Methods: Human gingival fibroblasts were exposed to pro‐inflammatory cytokines (interleukin‐1β, tumor necrosis factor‐α), a T‐helper 1 cytokine (interferon‐γ), T‐helper 2 cytokines (interleukin‐4, interleukin‐13), T‐helper 17 cytokines (interleukin‐17A, interleukin‐22) and regulatory T‐cell cytokines (interleukin‐10, transforming growth factor‐β1) for 24 h. CXCL10 production by human gingival fibroblasts was examined by enzyme‐linked immunosorbent assay. Results: Human gingival fibroblasts produced CXCL10 protein upon stimulation with interleukin‐1β, tumor necrosis factor‐α and interferon‐γ. Treatment of human gingival fibroblasts with interferon‐γ in combination with tumor necrosis factor‐α or interleukin‐1β resulted in a synergistic production of CXCL10. However, interleukin‐4 and interleukin‐13 inhibited CXCL10 production by interferon‐γ‐stimulated or tumor necrosis factor‐α‐stimulated‐human gingival fibroblasts. On the other hand, interleukin‐17A and interleukin‐22 enhanced CXCL10 production by human gingival fibroblasts treated with interferon‐γ and inhibited CXCL10 production by tumor necrosis factor‐α‐stimulated human gingival fibroblasts. Furthermore, the anti‐inflammatory cytokine, interleukin‐10, inhibited CXCL10 production by both interferon‐γ‐ and tumor necrosis factor‐α‐stimulated human gingival fibroblasts, but transforming growth factor‐β1 enhanced interferon‐γ‐mediated CXCL10 production by human gingival fibroblasts. Conclusion: These results mean that the balance of cytokines in periodontally diseased tissue may be essential for the control of CXCL10 production by human gingival fibroblasts, and the production of CXCL10 might be important for the regulation of T‐helper 1 cell infiltration in periodontally diseased tissue.
Keywords:CXCL10  fibroblast  periodontal disease
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号