首页 | 本学科首页   官方微博 | 高级检索  
检索        


Hydroxyapatite-coated titanium for orthopedic implant applications
Authors:S D Cook  K A Thomas  J F Kay  M Jarcho
Institution:Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, Louisiana 70112.
Abstract:The interface mechanical characteristics and histology of commercially pure (CP) titanium- and hydroxyapatite- (HA) coated Ti-6Al-4V alloy were investigated. Interface shear strength was determined using a transcortical push-out model in dogs after periods of three, five, six, ten, and 32 weeks. Undecalcified histologic techniques with implants in situ were used to interpret differences in mechanical response. The HA-coated titanium alloy implants developed five to seven times the mean interface strength of the uncoated, beadblasted CP titanium implants. The mean values for interface shear strength increased up to 7.27 megaPascals (MPa) for the HA-coated implants after ten weeks of implantation, and the maximum mean value of interface shear strength for the uncoated CP titanium implants was 1.54 MPa. For both implant types there was a slight decrease in mean shear strength from the maximum value to that obtained after the longest implantation period (32 weeks). Histologic evaluations in all cases revealed mineralization of interface bone directly onto the HA-coated implant surface, with no fibrous tissue layer interposed between the bone and HA visible at the light microscopic level. The uncoated titanium implants had projections of bone to the implant surface with apparent direct bone-implant apposition observed in some locations. Measurements of the HA coating material made from histologic sections showed no evidence of significant HA resorption in vivo after periods of up to 32 weeks.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号