首页 | 本学科首页   官方微博 | 高级检索  
检索        


Metabolism of 2-methyl analogs of 1alpha,25-dihydroxyvitamin D3 in rat osteosarcoma cells (UMR 106)
Authors:Sunita Rao Devara  Siu-Caldera Mei-Ling  Sekimoto Hiroko  Gennaro Lynn  Vouros Paul  Takayama Hiroaki  Konno Katsuhiro  Fujishima Toshie  Reddy Gudimetla Satyanarayana
Institution:Department of Pediatrics, Women and Infants Hospital of Rhode Island, Brown Medical School, Providence 02905, USA.
Abstract:Several novel A-ring modified analogs of 1alpha,25-dihydroxyvitamin D3 1alpha,25(OH)2D3] have been synthesized in order to investigate the structure-function relationships of 1alpha,25(OH)2D3. We synthesized A-ring modified analogs which contain a methyl group on C-2 of the A-ring. There are eight 2-methyl diastereomers, which differ in the stereochemistry of the methyl group on C-2 and the hydroxyl groups on C-1 and C-3. Further our biological activity studies of the 2-methyl diastereomers indicated that the potency of each analog is highly dependent on the stereochemistry of the A-ring substituents Konno et al., Biorg. Med. Chem. Letts. 8(2), 151-156 (1998); Nakagawa et al., Biochem. Pharmacol. 60(12), 1937-1947 (2000)]. For example, the VDR binding affinities exhibited by the 1alpha-isomers are significantly higher than those exhibited by the 1beta-isomers. Furthermore, out of all the 1alpha-isomers, the 2alpha-methyl isomers, when compared to the corresponding 2beta-methyl isomers, showed much higher potency in inducing cell differentiation of HL-60 cells, but failed to stimulate apoptosis. In contrast the 2beta-methyl isomers strongly stimulated apoptosis. At present it is unknown how the addition of the 2-methyl modification to the hormone, 1alpha,25(OH)2D3 alters its metabolism in target tissues. Previously, we reported that 1alpha,25(OH)2D3 is metabolized in rat osteosarcoma (UMR 106) cells via both the C-24 oxidation and the C-3 epimerization pathways. Therefore, we studied the metabolism of the four 1alpha,2-methyl diastereomers in UMR 106 cells. Our results indicated that in UMR 106 cells, all four diastereomers were metabolized into several polar metabolites via the C-24 oxidation pathway. Thus, the presence of the 2-methyl group on the A-ring did not inhibit the metabolism of the analogs via the C-24 oxidation pathway. However, it is significant to note that the 2-methyl group prevented the metabolism of the analogs via the C-3 epimerization pathway. In summary, we report that the 2-methyl group interferes with the action of the enzyme(s) involved in C-3 epimerization, but not with the enzyme 1alpha,25(OH)2D3-24-hydroxylase, which is responsible for C-24 oxidation pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号