首页 | 本学科首页   官方微博 | 高级检索  
检索        

活体心肌力学属性的介入超声导管检测:仪器设计
引用本文:邓辉胜,黄晶,邓昌明,刘地川,江永红,李进嵩,袁侨英,朱悫,黄如斌,蒋伟,王志刚,蔡恒辉,郭晋峰,王兴雄,杨金耀,郑永平.活体心肌力学属性的介入超声导管检测:仪器设计[J].中国医学影像技术,2006,22(10):1543-1546.
作者姓名:邓辉胜  黄晶  邓昌明  刘地川  江永红  李进嵩  袁侨英  朱悫  黄如斌  蒋伟  王志刚  蔡恒辉  郭晋峰  王兴雄  杨金耀  郑永平
作者单位:1. 重庆医科大学超声影像学研究所,重庆医科大学第二临床学院心内科,重庆,400010
2. 重庆医科大学超声影像学研究所,重庆,400010
3. 汕头超声仪器研究所,广东汕头,515041
4. 香港理工大学,中国香港
基金项目:国家自然科学基金资助项目(30371361,30430230)
摘    要:目的研制一种检测心肌生物力学属性的介入超声硬度检测仪,可直接、定量检测活体心肌组织硬度,为心肌病变提供力学相关资料。方法仪器由介入超声硬度检测导管、生理信号单元和主机组成。检测时,在X线透视下,将导管通过犬外周动脉血管进入左心室,印压左室壁,超声检测心肌厚度形变值,压力传感器获得印压力值,根据应力-应变关系,计算得到表征组织硬度的参量。结果应用该仪器进行活体犬心肌硬度检测,成功获取了舒张末期左室心尖部和游离壁心肌硬度值,其值分别为(40.55±4.75)kPa、(36.02±7.03)kPa。结论该仪器为直接定量检测活体心肌硬度提供了方法,可为临床判断心脏的整体和局部舒张、收缩功能异常提供定量检测技术,同时,也可检测其他深部组织硬度改变。

关 键 词:放射学  介入性  硬度检测仪  超声检查  应力-应变关系  心肌
文章编号:1003-3289(2006)10-1543-04
收稿时间:2006-06-08
修稿时间:2006-09-12

Biomechanical properties assessment of myocardium in vivo by interventional ultrasound catheter: design of instrument
DENG Hui-sheng,HUANG Jing,DENG Chang-ming,LIU Di-chuan,JIANG Yong-hong,LI Jin-song,YUAN Qiao-ying,ZHU Que,HUANG Ru-bin,JIANG Wei,WANG Zhi-gang,CAI Heng-hui,GUO Jin-feng,WANG Xing-xiong,YANG Jin-yao and ZHENG Yong-ping.Biomechanical properties assessment of myocardium in vivo by interventional ultrasound catheter: design of instrument[J].Chinese Journal of Medical Imaging Technology,2006,22(10):1543-1546.
Authors:DENG Hui-sheng  HUANG Jing  DENG Chang-ming  LIU Di-chuan  JIANG Yong-hong  LI Jin-song  YUAN Qiao-ying  ZHU Que  HUANG Ru-bin  JIANG Wei  WANG Zhi-gang  CAI Heng-hui  GUO Jin-feng  WANG Xing-xiong  YANG Jin-yao and ZHENG Yong-ping
Institution:Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;Institute of Ultrasonic Imaging, Chongqing Medical University, Chongqing 400010, China;Shantou Institute of Ultrasonic Instruments, Shantou 515041, China;Shantou Institute of Ultrasonic Instruments, Shantou 515041, China;Shantou Institute of Ultrasonic Instruments, Shantou 515041, China;Shantou Institute of Ultrasonic Instruments, Shantou 515041, China;The Hong Kong Polytechnic University, Hong Kong, China
Abstract:Objective To acquire myocardium associated mechanical properties by directly quantifying stiffness of myocardium in vivo. An intervention stiffness detection system for biomechanics assessment of myocardium in vivo was established. Methods The equipment was composed of intervention ultrasound stiffness detection catheter,physiological signal unit and mainframe. Under X-ray perspective, catheter passed through peripheral artery and entered into left-ventricle of dog, and then impressed left-ventricle wall. Tissue thickness deformation was determined from the ultrasound echo and the pressure value was also gained by pressure transducer. According to strain-stress relation, the term of myocardium tissue stiffness may be obtained. Results By using the equipment, myocardium stiffness of left-ventricle apex and free wall were (40.55±4.75) kPa and (36.02±7.03) kPa respectively. Conclusion The equipment offered a method for directly quantifying myocardium stiffness in vivo and clinical application for detecting local or whole myocardium diastolic and systolic insufficiency. Meanwhile it may be also used for detecting deep tissue stiffness.
Keywords:Radiology  interventional  Stiffness detection system  Ultrasonography  Stress-strain relation  Myocardium
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国医学影像技术》浏览原始摘要信息
点击此处可从《中国医学影像技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号