首页 | 本学科首页   官方微博 | 高级检索  
检索        


Neuropeptide Y mediates cardiac hypertrophy through microRNA-216b/FoxO4 signaling pathway
Authors:Jinghao Wang  Dan Hao  Lingfeng Zeng  Qianhui Zhang  Wei Huang
Institution:1.Department of Pharmacy, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China.;2.Department of Cardiology, the First Hospital of Harbin, Harbin 150010, China.;3.Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China.
Abstract:Cardiac hypertrophy (CH) is a major risk factor for heart failure accompanied by maladaptive cardiac remodeling. The role and potential mechanism of neuropeptide Y (NPY) in CH are still unclear. We will explore the role and the mechanism of NPY inactivation (NPY-I) in CH caused by pressure overload. Abdominal aortic constriction (AAC) was used to induce CH model in rats. NPY or angiotensin II (Ang II) was used to trigger CH model in vitro in neonatal rat ventricular myocytes (NRVMs). We found that NPY was increased in the heart and plasma of hypertrophic rats. However, Ang II did not increase NPY expression in cardiomyocytes. NPY-I attenuated CH as decreasing CH-related markers (ANP, BNP and β-MHC mRNA) level, reducing cell surface area, and restoring cardiac function. NPY inactivation increased miR-216b and decreased FoxO4 expression in CH heart. Moreover, NPY decreased miR-216b and increased FoxO4 expression in NRVMs which were reversed by NPY type 1 receptor (NPY1R) antagonist BIBO3304. MiR-216b mimic and FoxO4 siRNA (small interfering RNA) inhibited NPY/Ang II-induced myocardial hypertrophy in vitro. Meanwhile, BIBO3304 reversed the pro-hypertrophy effect of NPY in vitro. Collectively, NPY deficiency attenuated CH by NPY1R-miR-216b-FoxO4 axis. These findings suggested that NPY would be a potential therapeutic target for the prevention and treatment of cardiac hypertrophy.
Keywords:Cardiac hypertrophy  Neuropeptide Y  NPY1R  miR-216b  FoxO4
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号