首页 | 本学科首页   官方微博 | 高级检索  
     


Bisphosphonate-laden acrylic bone cement: mechanical properties, elution performance, and in vivo activity
Authors:Yu Nicole Y C  Ruys Andrew J  Zenios Michalis  Godfrey Craig  McDonald Michelle  Kiely Patrick  Mikulec Kathy  Little David G  Schindeler Aaron
Affiliation:School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, Australia.
Abstract:Cemented total hip replacements generally fail after 10-20 years, often due to implant loosening from bone resorption. Bisphosphonates such as zoledronic acid (ZA) and pamidronate (PAM) are potent inhibitors of bone resorption. The local delivery of bisphosphonates via acrylic bone cement could decrease osteolysis and prolong implant lifespan. Conflicting studies suggest that bisphosphonate loading may or may not reduce the mechanical properties of acrylic bone cement. We assayed acrylic bone cement laden with ZA or PAM at different concentrations and diluent volumes. Four-point bend testing and compressive testing indicated that high volumes of diluent (with or without bisphosphonate) significantly reduced bending modulus and compressive strength. Radiography and electron microscopy indicated that high diluent volumes generated abnormal acrylic bone cement structure. After 6 weeks of incubation in saline, only 0.9% w/w of the total bisphosphonate incorporated in acrylic bone cement eluted in vitro, indicating a slow elution rate. In vivo testing was performed using a rat model. Cement cylinders were inserted into incisions in rat distal femora and ZA delivered locally (via elution from acrylic bone cement) or systemically (via injection). At 4 weeks postoperatively, dual energy X-ray absorptiometry demonstrated no significant increase in local bone mineral density (BMD) adjacent to ZA-laden implants. In contrast, systemic ZA delivery (0.1 mg/kg) led to a large (48.6%) and significant increase in BMD. Thus, systemic delivery appears more effective than local delivery.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号