首页 | 本学科首页   官方微博 | 高级检索  
     

宫颈癌后装治疗中基于U-net的自动施源器分割
引用本文:胡海,黎杰,王培,唐斌,王先良,杨强. 宫颈癌后装治疗中基于U-net的自动施源器分割[J]. 实用肿瘤学杂志, 2021, 35(3): 248-253. DOI: 10.11904/j.issn.1002-3070.2021.03.010
作者姓名:胡海  黎杰  王培  唐斌  王先良  杨强
作者单位:1.成都理工大学地学核技术四川省重点实验室(成都 610059); 2.四川省肿瘤医院·研究所
基金项目:四川省重点研发计划(编号:2019YFS0473),四川省卫生健康科研课题普及项目(编号:19PJ273)
摘    要:目的 在CT引导的宫颈癌三维后装治疗计划制定中,应用U-net模型完成施源器的自动分割.方法 基于U-net网络创建深度学习模型,将2019年12月—2020年10月的27例宫颈癌患者数据经过预处理后写入数据集,按照15:2:10的比例将数据集划分为训练集、验证集和测试集.将训练集和验证集数据放入模型中训练并验证,并将...

关 键 词:深度学习  施源器分割  后装  宫颈癌
收稿时间:2020-12-08

Automatic applicator segmentation based on U-net model in the brachytherapy of cervical cancer
HU Hai,LI Jie,WANG Pei,TANG Bin,WANG Xianliang,YANG Qiang. Automatic applicator segmentation based on U-net model in the brachytherapy of cervical cancer[J]. Journal of Practical Oncology, 2021, 35(3): 248-253. DOI: 10.11904/j.issn.1002-3070.2021.03.010
Authors:HU Hai  LI Jie  WANG Pei  TANG Bin  WANG Xianliang  YANG Qiang
Affiliation:1. The Applied Nuclear Technology in the Geosciences Key Laboratory of Sichuan province,Chengdu University of Technology,Chengdu 610059,China; 2. Sichuan Cancer Hospital & Institute
Abstract:Objective In the preparation of CT-guided three-dimensional brachytherapy treatment plan for cervical cancer,the U-net model was used to complete the automatic segmentation of the applicator.Methods A deep learning model was created based on the U-net network.The data of 27 cervical cancer patients from December 2019 to October 2020 were preprocessed and written into the data set,which was divided into ratios of 15∶2∶10 for a training set,a verification set and a test set,respectively.The training set and verification set were put into the model for training and verification.The test set was applied to the trained neural network to segment the applicators.Dice similarity coefficient(DSC),95th percentile house dove distance(HD95),relative volume diffidence(RVD),precision and recall were used to evaluate this model.Results The average DSC of 10 patients in the test set was 0.90,HD95 was 1.26mm,RVD was-0.06,the accuracy rate was 0.94,the recall rate was 0.88,and the segmentation time was 5s.Conclusion In this study,the U-net network was used to realize the automatic segmentation of the applicator in the three-dimensional brachytherapy treatment plan for cervical cancer.It can be applied to the reconstruction of the applicator,which has great significance in realizing the automation of clinical planning.
Keywords:Deep learning  Applicator segmentation  Brachytherapy  Cervical cancer  
点击此处可从《实用肿瘤学杂志》浏览原始摘要信息
点击此处可从《实用肿瘤学杂志》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号