首页 | 本学科首页   官方微博 | 高级检索  
检索        


Aperture Fixation in Arthroscopic Anterior Cruciate Ligament Double-Bundle Reconstruction
Institution:1. Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308 433, Singapore;2. Department of Orthopaedic Surgery, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308 433, Singapore
Abstract:The native anterior cruciate ligament (ACL) consists of 2 bundles, which have distinct biomechanical yet synergistic functions with respect to anterior tibial translation and combined rotatory loads. Traditionally, most ACL reconstruction techniques have primarily addressed the restoration of the anteromedial bundle, and less consideration was given to the posterolateral bundle. Recently, various ACL double-bundle reconstruction techniques have been described. With most of these techniques, however, an indirect extra-anatomic fixation far from the articular surface was performed. Because extra-anatomic fixation techniques, rather than aperture fixation techniques, are associated with graft tunnel motion, windshield wiper action, and suture stretch-out, concerns may arise regarding delayed biological incorporation, tunnel enlargement, and secondary rotational and anterior instability. We, therefore, present a novel arthroscopic technique that reapproximates the footprints of native ACL with the use of double-strand semitendinosus and gracilis autografts for reconstruction of the anteromedial and posterolateral bundles, respectively. A separate femoral and tibial tunnel is drilled for each double-strand autograft. The femoral tunnel for the anteromedial bundle is drilled primarily through a transtibial technique, and the femoral tunnel for the posterolateral bundle is drilled via an accessory anteromedial portal with the use of a 4-mm offset drill guide in the anteroinferior aspect of the femoral tunnel for the anteromedial bundle. Bioabsorbable interference screws are used in aperture fixation for anatomic fixation of each bundle. This technique attempts to reproduce closely the native ligament and its biomechanical function.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号