首页 | 本学科首页   官方微博 | 高级检索  
     


Bio-based arginine surface-modified ammonium polyphosphate: an efficient intumescent flame retardant for epoxy resin
Authors:Chen Cheng  Yi Wang  Yanling Lu  Shaojie Li  Hua Li  Jun Yan  Shiguo Du
Affiliation:Army Engineering University of PLA-Shijiazhuang Campus, Shijiazhuang Hebei 050003 P. R. China.; Naval Aeronautical University, Yantai Shandong 264000 P. R. China ; Hebei Jiaotong Vocational and Technical College, Shijiazhuang Hebei 050003 P. R. China,
Abstract:In this work, ammonium polyphosphate (APP) was surface-modified by bio-based arginine (Arg) for the first time to enhance its flame retardance for fire-safety epoxy resin (EP). The structure of Arg modified APP (Arg-APP) was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (1H-NMR), and scanning electron microscopy (SEM). The results illustrated that Arg was attached on the surface of APP through a cation exchange reaction. With Arg acting as the efficient carbon source, the char-forming ability of Arg-APP was significantly improved as illustrated by thermogravimetric analysis (TGA). The flame retardance of EP/APP and EP/Arg-APP composites was evaluated using the limit oxygen index (LOI), vertical burning tests (UL-94), and cone calorimeter tests (CCT). The results showed that at the same weight loading (15 wt%), Arg-APP had better flame retardance and smoke suppression performance compared with pristine APP, which can be attributed to Arg-APP constituting an integrated intumescent flame retardant (IFR) and facilitating formation of char residues with significantly expanded structures and higher carbonization degrees. When the weight loading of Arg-APP reached 25 wt%, the EP/Arg-APP composite could achieve an LOI value as high as 34.7%, pass V-0 requirements in UL-94 tests, and decrease the peak heat release rate and total smoke production by 83.5% and 61.1% compared with neat EP in CCT, respectively, indicating the superior flame retardance performance of Arg-APP. Finally, the effects of the flame retardant additives on the mechanical properties of EP were evaluated by the differential scanning calorimetry (DSC) tests and tensile-strain tests. At the same additive weight loading (15 wt%), the EP/Arg-APP composite showed higher glass-transition temperature and better tensile-strain properties compared with EP/APP composite, which can be attributed to the Arg shell structure improving the compatibility between APP and the organic substrate. In conclusion, this work presents a convenient and environmentally friendly method to improve the practical performance of APP.

Arginine modified ammonium polyphosphate was prepared through the cation-exchange reaction and applied as an intumescent flame retardant for epoxy resin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号